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Kurzfassung

Der Schwerpunkt dieser Arbeit liegt auf einem Optimierungsframework zur Steuerung und
Verifikation von cyper-physischen Systemen welches Steuerungsabläufe für ein gegebenes
System erstellt um es in einen speziellen Zustand zu bringen.

Die Hauptmotivation hinter dieser Arbeit ist die in der Natur vorkommende Energiemi-
nimierung bei Langstreckenflügen von Vögeln in einer V-Formation. Dabei stellt sich
die folgende Frage: Sind diese V-Formationen das Ergebnis einer Lösung eines Optimie-
rungsproblems und kann dieses Konzept auch auf cyber-physische Systeme, speziell für
Drohnenschwärme, angewendet werden um die Sicherheit zu erhöhen und die Ausfalls-
wahrscheinlichkeit zu minimieren?

In dieser Arbeit wird der Stand des Wissens in statistischem Model Checking und op-
timierungsbasierten Steuerung für nichtlineare Systeme kombiniert. Zuerst wird eine
kontrollbasierte Bewertung von Wahrscheinlichkeiten seltener Ereignisse, welche zu fata-
len Unfällen mit cyber-physischen Systemen führen könnten, vorgestellt. Dann werden
Steuerungen für einen Schwarm von Vögeln erstellt, welche als stochastische multi-agent
Systeme, ausgestattet mit einer hohen nicht-linearen Funktion, modelliert werden. Außer-
dem zeigen wir, dass der vorgestellte Steuerungsansatz, im Bezug auf selten vorkommende
Ereignisse, stabil ist. D.h., er führt nach diversen Schadangriffen zu einer erfolgreichen
Wiederherstellung der optimalen Formation. Zum Schluss wird noch die Möglichkeit
untersucht, diese Steuerung effizient auf mehrere Agenten zu verteilen.

Wir zeigen dass unser Framework auf jedes System angewendet werden kann, welches
als steuerbares Markow-Entscheidungsproblem mit Belohnungsfunktion modellierbar ist.
Ein Schlüsselmerkmal des vorgestellten Verfahrens ist eine automatische Anpassung and
die Konvergenzleistung von Optimierungen zu einem globalen Ziel. Mit der Kombination
von Model Predictive Control und Ansätzen von sequentiellen Monte-Carlo Methoden,
präsentieren wir einen leistungsbasierten, adaptierbaren Horizont und erstellen indirekt
eine Lyapunov Funktion welche eine Konvergenz garantiert. Mit statistischem Model
Checking wird der Algorithmus verifiziert und dessen Zuverlässigkeit bewertet.
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Abstract

The main focus of this thesis is an optimization-based framework for control and verifica-
tion of cyber-physical systems that synthesizes actions steering a given system towards a
specified state.

The primary motivation for the research presented in this thesis is a fascination with
birds, which save energy on long-distance flights via forming a V-shape. We ask the
following question: Are V-formations a result of solving an optimization problem and
can this concept be utilized in cyber-physical systems, particularly in drone swarms, to
increase their safety and resilience?

In this thesis, we combine the state-of-the-art in statistical model checking and optimization-
based control for nonlinear systems. First, we propose a control-based evaluation of
the probability of rare events that can lead to fatal accidents involving cyber-physical
systems. Second, we synthesize controllers for a flock of birds modeled as a stochastic
multi-agent system equipped with a highly nonlinear cost function. Further, we show
that the proposed control approach is stable with respect to rare events, i.e., it leads to
a successful recovery of the optimal formation from several types of malicious attacks.
Finally, we investigate the ways to efficiently distribute control among the agents.

We demonstrate that our framework can be applied to any system modeled as a con-
trollable Markov decision process with a cost (reward) function. A key feature of the
procedure we propose is its automatic adaptation to the convergence performance of
optimization towards a given global objective. Combining model-predictive control and
ideas from sequential Monte-Carlo methods, we introduce a performance-based adaptive
horizon and implicitly build a Lyapunov function that guarantees convergence. We use
statistical model-checking to verify the algorithm and assess its reliability.
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CHAPTER 1
Introduction

“Don’t be a ”

Mia Wallace, “Pulp Fiction” by
Quentin Tarantino

1.1 Taking Off
The airplane industry is making every effort to lower their fuel costs by as little as one
percent. In August 2017, Boeing Co. and NASA announced a collaboration on reducing
fuel consumption of commercial flights by copying the ways in which migratory birds
successfully perform long-distance flights [Blo17, Geo18]. They do so by taking advantage
of the upward air boost generated under the flapping wings of their flock mates while the
leader does most of the work [WMC+01a, PHF+14]. Researchers around the world are
still trying to understand how the birds do it with such precision. In July 2018, the first
human-led bird migration was successfully performed in Europe to save the ibis species,
who had been extinct in the wild. The chicks were brought up in Vienna zoo by human
foster parents who were then led in a V-formation by a human piloted aircraft as a flock
leader to Tuscany [Gua18]. It took 45 minutes for ibises to form a perfect V. It is still
unclear why the birds temporary take suboptimal positions in the flock.

This line of research is ongoing and Boeing is actively striving to collect evidence showing
an expected ratio of saved fuel for commercial aircraft. NASA, in turn, has been long
studying efficient nature-inspired approaches to flights in the Earth’s atmosphere and outer
space [NAS03]. Their experiments with Boeing C-17 military transport planes [For13]
and F-18 fighter jets [NAS01] flying in formation showed an energy saving of at least 10
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and 15 percent, respectively. The core of this thesis was inspired by these discoveries and
designed to improve state-of-the-art techniques for verification and control of stochastic
multi-agent systems in general.

In this thesis, we aim to design a real-time adaptive optimization framework for the
resilient formation control of unmanned aerial vehicles in adversarial environmental
conditions. We envision that a bird-inspired optimization technique can help a collection
of autonomous agents fly safely and efficiently while maintaining formation.

1.2 Ground Control

In the last years, intelligent technologies have expanded in an exponential fashion: from
autonomous cars to smart cities. Most of them are intended to receive information from
the environment through sensors and perform appropriate actions using actuators of
the controlling unit. These can be generalized as Cyber-Physical Systems (CPS). CPS
are “engineered systems that are built from, and depend upon, the seamless integration
of computational algorithms and physical components” [NSF]. Next we are facing the
future of CPS penetrating almost every aspect of our lives bringing higher comfortability
and efficiency.

The question one may ask is whether the industry is moving too fast with the deployment
of such technologies [sel]. In March 2018, an autonomous Uber was involved in a fatal
accident which resulted in the suspension of autonomous driving test by Uber up until
now [Ube]. This was followed by another accident when Tesla’s Autopilot ran into a
concrete highway lane killing the driver [Tes].

The goal of this thesis is to provide techniques that support autonomous CPS operating
in assuring safety. We strive to 1) check absence of bugs by formal verification and
2) guarantee their resilience by synthesizing controllers. In contrast with classic computer
applications, CPS are exposed to serious challenges posed by the physical environment,
which can be classified as follows.

1. Challenges in formal verification:

– Account for sensor noise, which might cause estimation error, while analyzing
output of the system.

– Build an appropriate abstract model of the system.
– Estimate the current state of the system: for a system of systems its global

state at a particular moment is challenging to determine exactly.
– Provide guarantees for specification satisfaction.

2. Challenges in control at runtime:

– Real-life obstacles and collision avoidance.
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– Prediction of environmental conditions that might hinder property satisfaction.
– Model predictive control, steering the system towards a desired state.
– Correction action in case of error detection.
– Adaptive optimization for efficient and resilient mission completion.

Model-checking proved to be the most effective approach to formal verification of dynam-
ical systems [CHVB16, BK08]. Nowadays it is widely used for verifying hardware and
software in industry. For CPS, the physical environment renders the problem of CPS verifi-
cation extremely cumbersome. Environmental conditions, such as wind, for instance, often
exhibit chaotic behaviors best captured by stochastic processes [SBH+05]. Approximate
prediction techniques, such as Statistical Model Checking (SMC) [GS05, CZ11, AP18],
have therefore recently become increasingly popular. Since CPS may contain black-box
components, statistical analysis techniques are generally more adequate, because they do
not necessary require a model of the system. As a result, verification of a CPS boils down
to quantitative analysis of how close the system is to reaching bad states (safety property)
or the desired goal (liveness property). Controlling the systems, that is, computing
appropriate response actions depending on the environment, involves probabilistic state
estimation, as well as optimal action prediction, i.e., choosing the best next step by
simulating the future.

In other words, imagine a collection of systems, perhaps autonomous, but united by one
or a set of missions. Everything would be easy if the mission was linearly reachable and
everything would happen in a vacuum. However, for CPS, this is typically not the case.
What if the mission is so complex that we can not easily identify its components and
apply one of the favorite control methods? In this case, we need to look for approaches
that could work not with the mission representation, but the data that we obtain when
trying to simulate the scenarios of events. Assuming we found the right tools, how
to distribute the tasks, how to coordinate subsystems within the system, and how to
survive the malfunctioning in communication or completing tasks without full information
remain in question. In this thesis, we develop a general framework addressing questions
of verification and control of cyber-physical systems under uncertainty via optimization.

1.3 Mission
Verification. Thinking of drones, one might first imagine large sophisticated remotely
controlled aerial vehicles. The technological trend is, however, directed towards completely
autonomous agents. In this regard, micro air vehicles in a formation are one of the
most interesting lines in drone research. A collection of small entities taking decisions
for themselves cooperatively based on the global objective and local information is a
phenomenon well-observed in nature and only partially implemented in technology.

Researchers in multiple disciplines collaboratively have developed centralized and dis-
tributed approaches to control large formations of drones. They learned to mimic flocking
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behaviors and employ nature-inspired optimization techniques for control. Nowadays we
can enjoy quite impressive micro-drone air shows, which are in most cases inspired by
swarm behaviors. There is yet a limited body of work on bringing unmanned vehicles
into organized formations to save energy consumption. This is the ongoing research that
attracts a lot of interest in aerospace and avionics community.

We motivate the verification question by the challenges associated with automatic control
for unmanned vehicles, in particular flying drones (or UAV). First, we would like to
use UAV simulation models to investigate their safety. It is essential that the following
properties are satisfied for flying drones. First, drones must not collide with each other,
hit other flying objects, or crash into people. Second, rare events (e.g., diverging from the
goal) are estimated with high confidence. Finally, the external influences are correctly
addressed.

Control. After we estimate the probability of rare events, it is only logical to address
the control question by developing a policy guaranteeing that the system stays away from
rare events and satisfies the requirements above. The control question we are addressing
is motivated by nature itself, namely, by flocks of birds organizing into V-formations
while traveling long distances. Bird-inspired algorithms continue gaining their popularity
among control engineers due to their flexibility and efficiency, with PSO [KE95] as one
of the prominent examples. This line of research has been of great interest to such
institutions as Boeing and NASA. It is only natural for modern cyber-physical systems,
in particular, drones flying in the real-world environment, learn from nature itself.

Every bird-like agent in our model moves in 2-dimensional space locally governed by
the same control law [YGST16a]. Any agent in the flock can detect the positions
and velocities of all other agents through sensors. Given this information, the agent’s
controller calculates an optimal acceleration based on the three metrics we define: clear
view, velocity matching, and upwash benefit. Formulated this way the optimization
problem we solve leads to a V-formation as an optimal state for the flock.

Ultimately, we synthesize an algorithm providing analytical guarantees of birds getting
into a V-formation starting from a random configuration using a flying drones simulation
model and statistical model checking. PSO uniformly distributes the particles in space
and adjusts their velocities to lead the swarm to satisfying a given property while using
a random factor in the adjustment rule in order to explore the space.

The resulting V-formation provides the birds with a clear view of the front field and
visibility of their lateral neighbors. Moreover, the formation is of great importance to
flocking birds for saving energy from the free lift as a beneficial effect of the upwash region
generated off the trailing edge of wings of the birds in front of them [WMC+01a]. We
believe this approach can lead to a breakthrough discovery in developing energy-efficient
and reliable autonomous technologies.

Due to the stochastic nature and the large scale of the systems we are interested in, the
most promising sources of answers to the questions we pose are approximate algorithms,
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meta-heuristic techniques, and optimization-based approaches to verification and control.
Experimenting with existing algorithms in application to our model inspired us to develop
a general optimization framework, adaptive and flexible for the user to specify a problem
setting and properties of their interest.

1.4 Scientific Contributions
The main contribution of this thesis is a general adaptive optimization framework for
verification and control of CPS. Developed to address the research questions above,
this framework proved to be efficient compared to existing simulation-based techniques.
Moreover, we used statistical model checking to assess performance of the framework
for several problem settings improving state-of-the-art: reachability for rare events, plan
synthesis for reachability verification, resilient formation control, distributed mission
coordination, and drone area coverage.

The block-diagram in Figure 1.1 comprises main components of the framework and its
process flow. In brief, the core procedure is enclosed in the outer dashed block. It receives
a controllable stochastic multi-agent system on the top left and a cost function on the top
right as inputs. As a result, if minimum of the cost function can be reached, it outputs a
controller driving the system towards the optimal state. Otherwise, it provides statistical
guarantees that no path can be found. The role of each component and their adaptation
to a particular problem setting will be discussed in the following chapters.

1.5 Landing
For the reader’s convenience we built a smooth road through this thesis. All the necessary
preliminaries are provided in Chapter 2, further supported by an overview in Chapter 3
of existing techniques to tackle the problem class of our main interest. To stay on track,
our adaptive optimization framework goes as a red thread of our narrative through the
problem settings we addressed. Chapter 4 deals with rare events and demonstrates
the way we improve model checking of the latter using advanced statistical methods.
The developed approach inspired the design of our adaptive receding-horizon synthesis
algorithm presented in Chapter 5. It builds plans for controllable Markov decision
processes to reach the desired states assuming they are reachable. Chapter 6 describes
the adaptive controller that we proposed as a response to adversarial attacks on the
system. To address the challenge of scalability we demonstrate the distributed version
achieving comparatively better performance in Chapter 7. The adaptive optimization
framework was developed as a result of all the above. Chapter 8 illustrates applicability
of the framework to several real-world problems for drone fleets. We conclude with
numerous exciting directions for future research in Chapter 9.
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Sequential Monte-Carlo

Space & Time
Exploration

Cost a(t)

s(t) s(t+1)

Cost

ah(t)h++ `++h=1

Figure 1.1: Main components of the adaptive optimization framework. Arrows direct the
process flow of the algorithm. Outer dashed box is the main procedure which receives
as input a system model (upper left box) and an objective function (upper right box).
Inner dashed box contains a randomized optimization tool (in our case, particle swarm
optimization), which simulates the system model on randomly sampled control inputs
and explores time and space via horizon length h and population size, respectively. The
value of objective function is computed for the whole sequence of the best control inputs
ah(t). The implicit Lyapunov function is built in the box to the right and the next level
` is determined. The output of the framework is a controller for the system depicted as a
game-pad on the bottom of the diagram.
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Ch. 2: Background  Ch. 3: State-of-the-Art
 

 Ch. 4: Verification

Ch. 5: Plan Synthesis
 

Ch. 6-7: Control
synthesis  

Ch. 8: Real-World
Applications

Ch. 9: Future

Figure 1.2: Roadmap of the main chapters of this thesis.
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CHAPTER 2
Background

This chapter contains the methodology, notions, and models heavily used in this thesis.

When the exact current state of a stochastic system is not known and only its output
is observed we represent the system as a Hidden Markov Model (HMM) incorporating
its stochastic behavior. In case of time-dependent state dynamics, we model the system
as a Markov Decision Process (Markov Decision Process (MDP)). Properties of interest
are expressed using Bounded Linear Temporal Logic (BLTL) and the corresponding
logical formula is verified using the Statistical Model Checking (SMC) approach. The
system is controlled at runtime by Model-Predictive Control (Model Predictive Control
(MPC)) that chooses the best action based on the output produced by Particle Swarm
Optimization (PSO) simulating the future. With the help of Importance Splitting (ISpl)
and Importance Sampling(ISam) we weave all the above into an adaptive optimization
framework.

2.1 Hidden Markov Models
To perform system verification we need to find a reliable model abstraction. The state-
of-the-art abstraction for behavior of a stochastic system is an HMM [Rab89a]. It is a
probabilistic finite state automaton with probabilistic outputs. If X = {x0, . . . , xT } is a
set of hidden states and Y = {y0, . . . , yT } is a set of observations, then an HMM can be
described by a tuple H = (π0, TH , OH), where

π0 – initial distribution,

TH – transition matrix containing conditional probabilities Pr[xt+1|xt] between the
states,

OH – observation matrix with Pr[yt|xt].
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There are three major questions that we address concerning HMM:

• Computing the probability of an observed output when the states are hidden

• Finding the most likely hidden state given an observation set (state estimation)

• Choosing model parameters that maximize the likelihood of provided output set
given a set of states (parameter estimation)

2.2 Temporal Logic
The semantics of BLTL is defined with respect to the simulation traces of the model
ω = x0x1x2 . . . that represent the transition of the learned hidden model from state xj
to state xj+1 within time ti, where T =

N∑
j=1

tj . Property ϕ is denoted by ω |= ϕ. To

give an example, a trace ω = 12211234 satisfies the property of a program counter that
increments or resets to 1, depending on a coin flip, to reach state xN = 4 within T = 8
steps.

BLTL restricts Linear Temporal Logic by bounding the scope of the temporal operators.
The syntax of BLTL is defined as follows:

ϕ = ϕ ∨ ϕ | ϕ ∧ ϕ | ¬ϕ | F≤tϕ | G≤tϕ | ϕU≤tϕ | Xϕ | α

∨,∧ and ¬ are the standard logical connectives and α is a Boolean constant or an atomic
proposition constructed from numerical constants, state variables and relational operators.
X is the next temporal operator: Xϕ means that ϕ will be true on the next step. F,
G and U are temporal operators bounded by time interval [0, t], relative to the time
interval of any enclosing formula. We refer to this as a relative interval. F is the finally or
eventually operator: F≤tϕ means that ϕ will be true at least once in the relative interval
[0, t]. G is the globally or always operator: G≤tϕ means that ϕ will be true at all times
in the relative interval [0, t]. U is the until operator: ψU≤tϕ means that in the relative
interval [0, t], either ϕ is initially true or ψ will be true until ϕ is true. Combining these
temporal operators creates complex properties with interleaved notions of eventually (F),
always (G) and one thing after another (U).

The semantics of BLTL for a trace suffix ωk = x0 . . . xk of length k (k ∈ N) is defined as
follows:

– ωk |= AP iff atomic proposition holds true in state xk;

– ωk |= ϕ1 ∨ ϕ2 iff ωk |= ϕ1 or ωk |= ϕ2;

– ωk |= ¬ϕ1 iff ωk |= ϕ1 does not hold;
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– ωk |= ϕ1Utϕ2 iff ∃i > 0 s.t.
i−1∑
`=0

tk+` 6 t,

ωk+i |= ϕ2,
∀0 6 j < i ωk+j |= ϕ1.

Given the finite execution traces of the model, we define required properties using
BLTL [CZ11] with the following grammar:

ψ ::= y ∼ v|(ψ1 ∨ ψ2)|¬ψ1|(ψ1Utψ2),

where ∼∈ {>,6,=}, v ∈ Q, t ∈ Q>0. An atomic property ψ is defined as ψ = |x−C | 6 ε
for some metric |x| and some constant C . Then the reachability property can be
formulated as

ϕ = FT(|xN − C | 6 ε).

Definition 1 We will call RE a rare event if the probability of RE is exceptionally
small but the event itself can potentially be a danger to the whole system.

A property FTψ = TrueUT(|xN − RE| 6 ε) means that within time T eventually ψ
will be true, i.e., a simulation trace will reach an ε-neighborhood1 of the rare event.

2.3 Markov Decision Process

Definition 2 A Markov Decision Process M = (S,A, T, J, I) is a 5-tuple consisting
of a set of states S, a set of actions A, a transition function T : S×A×S 7→ [0, 1], where
T (s, a, s′) is the probability of transitioning from state s to state s′ under action a in
discretized time, a cost function J : S 7→R, where J(s) is the cost associated with state s,
and an initial state distribution I : S 7→ [0, 1].

Our definition of an MDP differs from the traditional one [Bel57] in that it uses a cost
function instead of a reward function. We find this definition more convenient for our
purposes. Our focus is on continuous-space MDP; i.e., the state space S is Rn and the
action space A is in Rm.

1In this case it is a set of all open balls of radii ε under the given metric with the centers in required
rare properties.
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2.4 Statistical Model Checking

SMC is intended to check simulation traces of the learned HMM and verify a given BLTL
property [CZ11]. A statistical model checker takes as input a stochastic model of the
system and verifies the latter using statistical inference, that is, it derives the underlying
distribution of the cases where properties are satisfied based on statistical data gathered
during randomized model simulation given a stochastic model of the system. The key
idea behind SMC is to sample the execution behavior of the model through simulation.
Given the simulation traces, SMC uses statistical measures to predict, with a desired
confidence and error margin, whether the system satisfies a given property.

SMC can be applied to any stochastic model, such as the ones exhibiting Markov
property [Gag17], to verify a property expressed in any logic, assuming that a probability
space can be defined. The technique therefore has proved to be efficient for analysis
of the systems with large state spaces in such areas as computer science, security, and
system biology [AP18]. When SMC is used for hypothesis testing, the property of interest
is typically assessed for every execution trace and the result is treated as a sample in a
Bernoulli trial [Wal45a]. Since the Bernoulli distribution rapidly converges to normal
distribution in the limit, we consider these samples to be our observations of the system.

2.5 Model Predictive Control

MPC is an advanced techniques of performing process control [CA07]. Given a model,
a target (a desired property), and a metric of closeness to the target, MPC chooses
the optimal next action by looking several time steps ahead. The controlled system is
typically described by a discrete time model. The problem is usually formulated as an
optimization for the fitness function (the metric) depending on the prediction horizon
(the size of time window into the future) and control horizon (the number of optimized
steps). The property of interest is that a fitness function reaches minimum value within
bounded time. It is verified subject to the system dynamics and the initial constraints.
Only the first control out of the whole control horizon is implemented and the rest is
discarded. The newly predicted state is used as a new initial condition for updating
the optimization problem. The process is repeated until the fitness function does not
improve any more [MRRS00]. We employ MPC to tackle the control-based verification
question of a deployed system.

2.6 Learning: Baum-Welch Algorithm

Addressing the verification question, we start by learning a HMM of a CPS. The Baum-
Welch algorithm [RG99] is an iterative process for learning model parameters θ∗ of an
HMM based on the observation set Y only. It is based on the expectation-maximization
technique which maximizes log-likelihood of the data. Introducing latent variables z ∈ Z
for each of the observations y ∈ Y the algorithm can be summarized by two steps:
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E: Compute Q(θ, θs) =
∑
z∈Z

log(Pr[Y, z|θ]) Pr[z|Y, θs].

M: Update θs+1 = arg max
θ
Q(θ, θs).

The algorithm converges when the log-likelihood of the data stops improving more than a
relatively small ε. Posterior distribution of the latent variables can be efficiently computed
using forward-backward algorithm.

Given the algorithm above we are going to synthesize its parameters or combine it with
other learning techniques for more accurate prediction of the system behavior. Having
learned a stochastic model of the system we will simulate its behavior and gather statistics
required by the statistical model checker to verify logical properties.

2.7 Sequential Monte-Carlo Methods
We use ISam for estimating the current state of the system, which is required for
control process. ISam algorithm is applied in cases when the distribution of observable
information is not feasible to sample from [DdFG01]. The method proposes to choose
another distribution q(x) overweighting the important region of our interest. Then we use
so-called likelihood ratio p(x)/q(x) in order to adjust for not sampling from the nominal
distribution p(x).

ISpl is a rare event simulation technique which has been first mentioned in the early
50’s [KH51] and was used to estimate the probability that neutrons would pass through
certain shielding materials. This physical example provides a convenient analogy for the
more general case. The system comprises a source of neutrons aimed at one side of a
shield of thickness τ . It is assumed that neutrons are absorbed by random interactions
with the atoms of the shield, but with some small probability γ it is possible for a neutron
to pass through the shield. The distance traveled in the shield can then be used to define
a set of increasing levels `0 = 0 < `1 < `2 < · · · < `n = τ that may be reached by the
paths of neutrons, with the property that reaching a given level implies having reached
all the lower levels.

We currently employ ISpl for system verification in combination with ISam given a system
model.

2.8 Particle Swarm Optimization
For the research questions related to control, we would like to employ PSO. There exist
a range of optimization techniques [BLS13]: descent methods are typically adapted to
convex cost functions; evolutionary algorithms deal well with multi-modal functions; and
pattern search techniques work with noisy cost functions. The function of our interest
is nonconvex nonlinear and nondifferentiable. We therefore chose a method from the
class of evolutionary approaches. PSO is an intelligent algorithm inspired by flocking
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birds [KE95]. We assume that we have a number of birds and we assign a particle to
each of them. Each bird has the same goal – finding food, but none of them knows its
location. However, each bird knows the distance to the target. Therefore, the optimal
solution for the flock to follow the bird closest to food.

The algorithm uses a fitness function to choose the best control action. For each particle
the following values can be calculated: the best value of the fitness reached so far, and
the global best among all the particles in the swarm (or the local best for the closest
neighbors). If the fitness value of the particle is better than the historical one the latter
is updated. The particle with the best fitness becomes a new global best. Finding
these values the particles chooses the best velocity adjustment and position update. The
procedure is repeated until the number of iterations reaches its maximum, the time
elapses, or the minimum criteria is satisfied.

The method is currently used in the control synthesis procedure to choose the correct
next action. When applied in combination with the output data collected at runtime,
it presents an opportunity to develop a powerful technique for providing statistical
guaranties for MPC, as well as SMC.

2.9 Flocking and V-Formation

Flocking or swarming in groups of social animals (birds, fish, ants, bees, bats, etc.) that
results in a particular global formation is an emergent collective behavior that continues
to fascinate researchers [Kri19, BH09, Cha14] and artists [Kro19, Bou19]. One would
like to know if such a formation serves a higher purpose, and, if so, what that purpose is.

One well-studied flight-formation behavior is V-formation. Most of the work in this
area has concentrated on devising simple dynamical rules that, when followed by each
bird, eventually stabilize the flock to the desired V-formation [Fla98, DS03, NB08]. This
approach, however, does not shed very much light on the overall purpose of this emergent
behavior.

In previous work [YGST16c, YGST16b], the authors hypothesized that flying in V-
formation is nothing but an optimal policy for a flocking-based MDPM. States ofM,
at discrete time t, are of the form (xi(t),vi(t)), 16 i6N , where xi(t) and vi(t) are
N -vectors (for an N -bird flock) of two-dimensional positions and velocities, respectively.
M’s transition relation, shown here for bird i is simply and generically given by

vi(t+ 1) = vi(t) + ai(t),
xi(t+ 1) = xi(t) + vi(t),

where ai(t) is an action, a two-dimensional acceleration in this case, that bird i can
take at time t. We chose the double integrator above to represent the system as we
assume that the bird aim at achieving a formation in two dimensional space and tilting or
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rotating it will not affect the optimality specification. Moreover, in optimal formation the
birds are assumed to maintain constant velocity without changing the resulting heading
direction. M’s cost function reflects the energy-conservation, velocity-alignment, and
clear-view benefits enjoyed by a state ofM.
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CHAPTER 3
State of the Art

3.1 Related Work on Statistical Model Checking
SMC was first introduced as testing the hypothesis that a temporal logic formula is
satisfied [YM02]. Applying statistical estimation techniques the approach was further
generalized onto simulating the system model and estimating the probability that a
temporal logic property is satisfied [YKNP06a]. For large and complex systems statistical
techniques are more efficient than symbolic model checking that overapproximates system
dynamics and analyses all the possible scenarios. The most widely used state-of-the-art
tools for SMC are:

• Storm1 [DJKV17] supports several types of model input and has been designed with
modularity in mind. It outperforms competitors on some probabilistic verification
problems.

• Plasma Lab2 [JLS12b] addresses quantitative verification question by using Wald
sequential hypothesis testing.

• PRISM3 [KNP11] performs formal model checking of stochastic systems from
various application domains, and can be used for building running examples for
testing verification algorithms.

• UPPAAL4 [BDL+12] allows the user to compare probability estimates, visualize
the results in the form of probability distributions, evolution of runs, and other
useful functionalities.

1http://www.stormchecker.org/
2https://project.inria.fr/plasma-lab/statistical-model-checking/
3http://www.prismmodelchecker.org/
4http://www.uppaal.org/
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Openness, uncertainty, and distribution, however, render the problem of accurate predic-
tion of the (emergent) behavior of CPS extremely challenging. Because of (exponential)
state explosion, model-based approaches to this problem that rely on exhaustive state-space
exploration such as classical model checking (MC) [CGP99], are ineffective. Approxi-
mate prediction techniques, such as SMC, have therefore recently become increasingly
popular [GS05, YKNP06b, CZ11]. An important advantage of SMC is that the sam-
pling can be parallelized, thus benefiting from recent advances in multi-core and GPU
technologies [BFG+10].

A serious obstacle in the application of SMC techniques is their poor performance in
predicting the satisfaction of properties holding with very low probability, so-called
rare events. In such cases, the number of samples required to attain a high confidence
ratio and a low error margin explodes [ZBC12, GS05]. Two sequential Monte-Carlo
techniques, ISam [DdFG01] and ISpl [GHSZ99], originally developed for statistical physics,
promise to overcome this obstacle. These techniques have recently been adopted by the
robotics [VGST04, RN10] and SMC communities [ZBC12, SBS+12, KBS+13, JLS12a,
JLS13]. This thesis provides an approach to estimate the probability of rare events by
steering the simulation of the learned system model towards them via a combination of
ISam and ISpl.

3.2 Related Work on Flocking
Organized flight in flocks of birds can be categorized in cluster flocking and line for-
mation [Hep74]. In cluster flocking the individual birds in a large flock seem to be
uncoordinated in general. However, the flock moves, turns, and wheels as if it were one
organism. In 1987 Reynolds [Rey87] defined his three famous rules describing separa-
tion, alignment, and cohesion for individual birds in order to have them flock together.
This work has been great inspiration for research in the area of collective behavior and
self-organization.

In contrast, line formation flight requires the individual birds to fly in a very specific
formation. Line formation has two main benefits for the long-distance migrating birds.
First, exploiting the generated uplift by birds flying in front, trailing birds are able
to conserve energy [LS70, CS94, WMC+01b]. Second, in a staggered formation, all
birds have a clear view in front as well as a view on their neighbors [BH09]. While
there has been quite some effort to keep a certain formation for multiple entities when
traveling together [SPH02, GIV05, DH15], only little work deals with a task of achieving
this extremely important formation from a random starting configuration [CS11]. The
convergence of bird flocking into V-formation has been also analyzed with the use of
combinatorial techniques[Cha14].

Compared to previous work, in [CA07] this question is addressed without using any
behavioral rules but as problem of optimal control. In [YGST16b] a cost function was
proposed that reflects all major features of V-formation, namely, Clear View (CV),
Velocity Matching (VM), and Upwash Benefit (UB). The technique of MPC is used to
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achieve V-formation starting from an arbitrary initial configuration of n birds. MPC
solves the task by minimizing a functional defined as squared distance from the optimal
values of CV, VM, and UB, subject to constraints on input and output. The approach is
to choose an optimal velocity adjustment, as a control input, at each time-step applied to
the velocity of each bird by predicting model behavior several time-steps ahead.

3.3 Related Work on CPS Control
The area of CPS control comprises a vast range of works. We would like to cover the
works related to adaptive optimization-base plan and control synthesis for dynamical
systems with uncertainties, in particular, modeled as MDPs. In addition, we look into
the approaches addressing resilience under attacks. The controller synthesis problem has
been widely studied [BMZR17]. The most popular and natural technique is Dynamic
Programming (DP) [Bel57] that improves the approximation of the functional at each
iteration, eventually converging to the optimal one given a fixed asymptotic error.
Compared to DP, which considers all the possible states of the system and might
suffer from state-space explosion in case of environmental uncertainties, approximate
algorithms [HMZ+12, BBB+16, MRG03, BBW11, SS12b, SS12a] take into account only
the paths leading to desired target. One of the most efficient ones is PSO [KE95] that
has been adopted for finding the next best step of MPC in [YGST16b]. Although it
is a very powerful optimization technique, it has not yet been possible to achieve a
high success rate in solving the considered flocking problem. Sequential Monte-Carlo
methods proved to be efficient in tackling the question of control for linear stochastic
systems [CWL09], in particular, ISpl [KJL+16a]. The approach we propose is, however,
the first attempt to combine adaptive ISpl, PSO, and receding-horizon technique for
synthesis of optimal plans for controllable systems. We use MPC to synthesize a plan,
but use ISpl to determine the intermediate fitness-based waypoints. We use PSO to solve
the multi-step optimization problem generated by MPC, but choose the planning horizon
and the number of particles adaptively. These choices are governed by the difficulty to
reach the next level.

In the field of CPS security, one of the most widely studied attacks is sensor spoofing.
When sensors measurements are compromised, state estimation becomes challenging,
which inspired a considerable amount of work on attack-resilient state estimation [FTD14,
PDB13, PWB+14, PIW+15, DWJ+16]. In these approaches, resilience to attacks is
typically achieved by assuming the presence of redundant sensors, or coding sensor outputs.
More recent work [SNP+17, MSK+17] proposes effective algorithm for estimating the
state of a noisy linear dynamical system that suffered an attack affecting an arbitrary
subset of its sensors. By applying Kalman filter, the approach searches for a reliable
subset of sensor measurements. The authors also present a way to improve the runtime of
the algorithm based on the Satisfiability Modulo Theory (SMT). Following these works,
[SCW+18] develops techniques for scaling the above approach to be efficiently used in
distributed setting. In our work, we do not consider sensor spoofing attacks, but assume
the attacker gets control of the displacement vectors (for some of the birds/drones). We
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have not explicitly stated the mechanism by which an attacker obtains this capability,
but it is easy to envision ways (radio controller, attack via physical medium, or other
channels [CMK+11]) for doing so.

Adaptive control, and its special case of adaptive model predictive control, typically refers
to the aspect of the controller updating its process model that it uses to compute the
control action. The field of adaptive control is concerned with the discrepancy between
the actual process and its model used by the controller. In our adaptive-horizon MPC,
we adapt the lookahead horizon employed by the MPC, and not the model itself. Hence,
the work in this paper is orthogonal to what is done in adaptive control [Nar90, ADG09].

Adaptive-horizon MPC was used in [DE11] to track a reference signal. If the reference
signal is unknown, and we have a poor estimate of its future behavior, then a larger
horizon for MPC is not beneficial. Thus, the horizon was determined by the uncertainty
in the knowledge of the future reference signal. We consider cost-based reachability
goals here, which allows us to choose a horizon in a more generic way based on the
progress toward the goal. More recently, adaptive horizons were also used in [Kre16] for
a reachability goal. However, they chose a large-enough horizon that enabled the system
to reach states from where a pre-computed local controller could guarantee reachability
of the goal. This is less practical than our approach for establishing the horizon.

A key focus in CPS security has also been detection of attacks. For example, recent
work considers displacement-based attacks on formation flight [NKC16], but it primarily
concerned with detecting which UAV was attacked using an unknown-input-observer
based approach. We are not concerned with detecting attacks, but establishing that
the adaptive nature of our controller provides attack-resilience for free. Moreover, in
our setting, for both the attacker the and controller the state of the plant is completely
observable. In [SSP+17], a control policy based on the robustness of the connectivity
graph is proposed to achieve consensus on the velocity among a team of mobile robots,
in the present of non-cooperative robots that communicate false values but execute the
agreed upon commands. In contrast, we allow the attacker to manipulate the executed
commands of the robots. The cost function we use is also more flexible so that we can
encode more complicated objectives.

We are unaware of any work that uses statistical model checking to evaluate the resilience
of adaptive formation controllers against certain classes of attacks (such as, for instance,
agent-removal and agent-displacement).

3.4 Related Work on Distributed Control

In [ZL13], the problem of taking an arbitrary initial configuration of n agents to a final
configuration, where every pair of stationary “neighbors” is a fixed distance d apart, is
considered. The authors present centralized and distributed algorithms for this problem,
both of which use MPC to determine the next action. The problem in [ZL13] is related
to our work. However, we consider nonconvex and nonlinear cost functions, which require
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overcoming local minima to ensure convergence. In contrast, [ZL13] deals with convex
functions, which do not suffer from problems introduced by the presence of multiple
local minima. Furthermore, in the distributed control procedure of [ZL13], each agent
publishes the control value it locally computed, which is then used by other agents to
calculate their own. A quadratic number of such steps is performed before each agent
fixes its control input for the next time step. In our work, we limit this number to linear.

Other related work, including [FD02, DD03, YZS17], focuses on distributed controllers
for flight formation that operate in an environment where the multi-agent system is
already in the desired formation and the distributed controller’s objective is to maintain
formation in the presence of disturbances. A distinguishing feature of these approaches
is the particular formation they are seeking to maintain, including a half-vee [FD02],
a ring and a torus [DD03], and a leader-follower formation [YZS17]. These works are
specialized for capturing the dynamics of moving-wing aircraft.

It is worth noting that, although our distributed approach uses global consensus, our
main focus is on adaptive neighborhood resizing and global convergence, and not on fault
tolerance [SV16, DLP+86].

In [MPA+17], the authors compare two MPC-inspired approaches to system self-adaptation:
CobRA [APSSM16] and PLA [MCGS15]. The common ground between these approaches
and ours is that the future behavior of the system is predicted based on a model, in the
case of PLA, a Markov decision process, and a sequence of actions is computed from the
current state for the length of prediction horizon. PLA resembles our approach also in
the way it synthesizes action plans at each discrete time step while only applying the
first of them to the plant. Unlike PLA, however, our approach adapts the prediction
horizon and neighborhood size based on the value of the cost function. Moreover, our
distributed procedure is guaranteed to converge to the goal state.

3.5 Summary
The main topic of this thesis is to develop adaptive optimization-based controllers for
CPS, with a particular emphasis (as an interesting application) on swarms of birds,
drones, etc.

Our interest was to start from a global controller and gradually refine it towards a fully
distributed controller. We chose the stabilization of a swarm of birds to a V formation as
a motivating application. For this purpose, we synthesized accelerations for all the birds,
such that starting from a random initial configuration, the birds eventually achieve a V
formation, as observed in nature.

We stated this as an optimal control (MPC) problem, with a nonlinear and nonconvex
cost function, and used particle swarm optimization, with an adaptive time-horizon, to
synthesize the accelerations (as the problem is nonconvex).

The main novelty here is a proof of convergence, given that a solution exists. We
assumed that V formations can be achieved, and that the system, modeled as an MDP,
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is controllable. Under these assumptions, we showed that one can generate on the
fly a Lyapunov function, inspired by sequential Monte-Carlo methods, which in turn
guarantees convergence. Intuitively, if a solution exists, one can gradually extend the
time horizon (possibly passing this way a bump from a local minimum), such that the
cost function is decreased by a desired delta. Using SMC we provide confidence level and
error margin for the convergence of our procedure.
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CHAPTER 4
Verification

First and foremost, we strive to obtain a better understanding of the challenges we face
when dealing with modern CPS. By doing so, we will be able to predict their behavior
in extreme cases and give guidance to the future generation of smart technologies.
We developed a novel framework of feedback control, which provides statistical model
checking procedure of CPS with state observations at each time step to improve rare
event estimation. By definition, a rare event has an exceptionally low probability to reach
from the initial state of the system using classical SMC, e.g., Monte-Carlo simulations.
We propose to control the system step-by-step driving it into the rare state based on the
statistical analysis of its execution trace.

In the proposed framework, ISam estimates the current state of a CPS and the current
level, and ISpl controls the execution of the CPS based on this information. Both
techniques depend on the model identified during a preliminary, learning stage. The
algorithm may be applied to the approximate analysis of any complex probabilistic
program whose monitoring is feasible through appropriate instrumentation, but whose
model derivation is infeasible with the use of static analysis techniques.

4.1 Statistical Model Checking
ISam and ISpl have individually demonstrated their utility on a number of models. We
are still, however, a long way from the statistical checking (SC) of CPS. In particular,
the following three challenges have not yet been addressed:

1. Learning CPS model. Since either the laws of dynamics or the control program are
only partially available, a finite-model abstraction via static analysis is infeasible.

2. Identifying CPS state. The output of the system represents only a small fraction of
the state variables or an arbitrary function defined over them.
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Figure 4.1: FC-SSC as a feedback controller exploiting ISam and ISpl.

3. CPS steering policy towards rare events. Since the system model is not available
in advance, the relationship between a rare event and CPS behavior is not known
either.

In this chapter, we attack the three challenges above by proposing a novel feedback-control
framework for the SC of CPS (FC-SSC); see Fig. 4.1. To the best of our knowledge,
this is the first attempt to define SC as control and to completely automate rare-event
estimation in CPS. In FC-SSC, we automatically:

1. Learn the CPS model. We assume that the CPS outputs are observable, which
are either measurements of the physical part or values output by the cyber-part.
Using a (learning) set of observation sequences and statistical system identification
(machine learning) techniques [RG99], we automatically learn an HMM of the CPS
under investigation.

2. Infer the CPS state. Having access to the current observation sequence and the
learned HMM, we employ statistical inference techniques to determine the hidden
state [RG99]. To scale up the inference, we use ISam as an approximation algorithm.
Although ISam was originally introduced for rare-event estimation, its practical
success is in state estimation.

3. Infer the CPS control policy. We assume that the CPS can be started, run for a
given period of time, paused, and resumed. To steer the system towards a rare
event, we use ISpl. This requires, however, a rare event decomposition into a set of
levels, such that the probabilities of going from one level to the next are equal, and
the product of these inter-level probabilities equals the rare event probability. By
using the learned HMM and the rare property, we automatically derive an optimal
rare event decomposition into levels.

In FC-SSC, ISam estimates the current CPS state and the current level, and ISpl controls
the execution of the CPS based on this information. Both techniques depend on the
HMM identified during the preliminary learning stage. FC-SSC may be applied to the
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approximate analysis of any complex probabilistic program whose monitoring is feasible
with the use of appropriate instrumentation, but whose model derivation is infeasible via
static analysis techniques (due to, e.g., sheer size or complicated pointer manipulation).

4.2 Rare Event Verification

Concepts of ISpl can be generalized to simulation models of arbitrary systems, where a
path is a simulation trace. By denoting the abstract level of a path as `, the probability
of reaching level `i can be expressed as P(` > `i) = P(` > `i | ` > `i−1)P(` > `i−1).
Defining γ = P(` > `n) and observing P(` > `0) = 1, using Bayes formula it is possible
to write

γ =
n∏
i=1

P(` > `i | ` > `i−1) (4.1)

Each term of the product (4.1) is necessarily greater than or equal to γ. The technique
of importance splitting thus uses (4.1) to decompose the simulation of a rare event into a
series of simulations of conditional events that are less rare.

4.2.1 On levels in the control context

If in physical and chemical systems distances and quantities may provide a natural notion
of level that can be finely divided, it is more difficult in an arbitrary model checking
problem. The main problem is that the property alone does not necessarily give hints on
how to construct the levels. If one constructs a priori the associated finite automaton
(for finite traces), one gets only two states: an initial state which accepts any event except
the one of interest and the accepting state. This automaton would accept all traces that
eventually reach the accepting state within some time bound.

To assign the levels, one needs to know more about the behavior of the program. For this
purpose, a model of the program is learned offline with the Baum-Welch algorithm. The
resulting HMM is a Markov chain which has to be related to the property in question.
On this chain, one can identify the paths to the accepting state. It is worth noticing
that the HMM is similar to a map in a robotic context. One can further improve the
HMM online by using the execution trace of the program. In our approach, bounded
temporal property ϕ is monitored and expressed as a deterministic finite automaton
(DFA). A DFA for ϕ is a tuple D= (s0, B, F ) where s0 ∈S is the initial state, B is the
transition function from S×Υ→S, where Υ are the observations, and F ⊆S is the set
of accepting states corresponding to the satisfaction of ϕ. Taking a parallel (synchronous)
composition of the DFA D and HMM, one obtains the “accepting” states marked on
the resulting HMM. In analogy with a map, one adds the starting and target locations.
This is followed by defining the finest possible sequence of increasing levels that lead to
the goal in the product HMM×DFA H×D. Such procedure is similar to drawing paths
towards the target location in the map for a robot, the levels being the mile-stones along
the paths.
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4.2.2 Running Examples

Two simple probabilistic programs illustrate the techniques in FC-SCC. First, in [JLS13,
KJL+16b], the framework was tested on the well-known Dining Philosophers Problem.
We further extended the experiments to another setting we called Success Runs.

Dining Philosophers. This example was chosen because its model is very well known,
its complexity nicely scales up, and its rare events are very intuitive. Moreover, the multi-
threaded program we use to implement Dining Philosophers illustrates the difficulties
encountered when trying to model check real programs, such as their interaction with
the operating system and their large state vector. In classic model checking, the former
would require checking the associated operating-system functions, and the latter would
require some cone-of-influence program slicing. Both are hard to achieve in practice.

For monitoring purposes, however, all that one needs to do is to instrument the entities of
interest (variables, assignments, procedure calls, etc.) and to run the program. Extending
monitoring to SSC requires however an HMM, a way of estimating the hidden states,
and a way to control the program. Our code is based on the variant of randomized
Dining Philosophers problem without fairness assumption, introduced in [DFP04]. To
minimize the interference of instrumentation with the program execution, we instrument
only one thread. To account for the unknown and possibly distinct executions of the
uninstrumented part of the program, we add loops (do_some_work) whose execution
time is distributed, for simplicity, according to a uniform probability distribution.

For space reasons, we show in Fig. 4.2 only a snippet of the C-code of the main loop of a
philosopher. The full code is available from [cod].

As it is well known, each philosopher undergoes a sequence of modes, from thinking,
to picking one fork, then the other, eating and then dropping the forks. It may drop
the single fork it holds also when it cannot pick up the other fork. Given, say, 100
philosophers, the rare event in this case is the property that a particular philosopher k
succeeds to eat within a given interval of time.

Success Runs. This model is a sequence of independent Bernoulli trials. An event in
each state i of the discrete-time Markov chain below results in a success with probability
pi, or a failure with probability 1− pi, where 0 < pi < 1. The example is straightforward
and, at the same time flexible enough, to illustrate the steps of the core statistical
approach of FC-SSC.

A simulation of even a simple case, when the chances of success and failure are equal,
for T > 7 time units without resetting back to zero is already a challenge. Thus, as a
rare event we consider reaching a state n within T = n− 1 steps, i.e without any failures
or delay. In an automotive industry this event corresponds to the number of time units
without stochastic freezing or restarting of an on-board computer.
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void ∗philosopher(int this) { while (true) {
do_some_work();
switch (phil_state[this]) {
case 0: /∗ cannot stay thinking so move to trying ∗/
phil_state[this] = 1; break;
case 1: /∗ draw randomly ∗/
if (flip_coin() == COIN_HEADS) phil_state[this] = 2;
else phil_state[this] = 3; break;
case 2: /∗ try to pick up left fork ∗/
emit_symbol(SYM_TRY); pthread_mutex_lock(&fork[this]);
if (fork_state[this] == FORK_FREE)
phil_state[this] = 4; fork_state[this] = FORK_TAKEN;
pthread_mutex_unlock(&fork[this]); break;
case 3: /∗ try to pick up right fork ∗/
emit_symbol(SYM_TRY); pthread_mutex_lock(&fork[(this + 1) % n_phil]);
if (fork_state[(this + 1) % n_phil] == FORK_FREE)
phil_state[this] = 5; fork_state[(this + 1) % n_phil] = FORK_TAKEN;
pthread_mutex_unlock(&fork[(this + 1) % n_phil]); break;
...
case 9: /∗ eat ∗/
emit_symbol(SYM_EAT);
if (flip_coin() == COIN_HEADS) {
pthread_mutex_lock(&fork[this]); phil_state[this] = 10;
fork_state[this] = FORK_FREE; pthread_mutex_unlock(&fork[this]);}
else {
pthread_mutex_lock(&fork[(this + 1) % n_phil]); phil_state[this] = 11;
fork_state[(this + 1) % n_phil] = FORK_FREE;
pthread_mutex_unlock(&fork[(this + 1) % n_phil]);} break;
case 11: /∗ drop left fork ∗/
emit_symbol(SYM_DROP_FORKS); pthread_mutex_lock(&fork[this]);
phil_state[this] = 0; fork_state[this] = FORK_FREE;
pthread_mutex_unlock(&fork[this]); break;
default: fatal_error(‘‘incorrect philosopher state’’); }}}

Figure 4.2: C code snippet of the main loop in the Dining Philosophers

4.3 System Identification

For simplicity, we assume that the models have only one state variable, that is, they
are HMM [RN10]. Note, however, that all the techniques introduced in this and the
following sections work as well for continuous-state linear Gaussian models [RG99].

An HMM consists of a triple H = (π0, TH , OH), where π0 is a probability vector of dimen-
sionN = |Σ| having an entry for each Pr[X0 =x0], and TH andOH are probability matrices
of dimensions N×N and N×|Υ|, respectively. Given N , Υ, and observation sequence
y= y0y1. . .yT , the goal of system identification is to learn the HMM H = (π0, TH , OH),
maximizing the expectation that an execution sequence x=x0x1 . . . xT of H produces
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Figure 4.3: Success Runs: the state-transition graph (left) and distribution of maximal
reached states for N = 1000 experiments with pi = 0.5 ∀i = 0:n (right)

output y. The algorithm is therefore known as the expectation-maximization (EM),
or Baum-Welch (BW) (after its authors) algorithm [Rab89b, RG99]. Maximizing the
expectation as a function of H is equivalent to maximizing:

L(H) = logP (y|H) = log
∑
x P (x, y|H) = log

∑
xQ(x)(P (x, y|H)/Q(x)),

where Q(x) is an arbitrary distribution over the state variable. Using Jensen’s inequality
and expanding the division within the logarithm one obtains:

L(H) ≥
∑
xQ(x) logP (x, y|H)−

∑
xQ(x) logQ(x) = F(H,Q)

The EM algorithm now alternates between two maximization steps:

E−step : Qk+1 = arg maxQ F(Hk, Q) M−step : Hk+1 = arg maxH F(H,Qk)

The E-step is maximized when Qk+1(x) =P (X =x | y,Hk), in which case likelihood
L(Hk) =F(Hk, Qk+1). The M-step is maximized by maximizing the first term in F(H,Q),
as the second (the entropy of Q) is independent of H [RG99]. Computing P (X =x | y,H)
is called filtering, which for HMM takes the form of the forward-backward algorithm.
Maximizing the M-step also takes advantage of filtering, as shown in algorithm Learn
below. Let:

αi(t) = P (y1:t, Xt =xi | H) βi(t) = P (yt+1:T | Xt =xi, H)
γi(t) = P (Xt =xi | y,H) ξij(t) = P (Xt =xi, Xt+1 =xj | y,H)

Then the system-identification algorithm Learn is defined as in Algorithm 4.1.

For the Dining Philosophers, we have collected a number of long traces emitted by a
single thread and used them to learn a 6-state HMM shown in Fig. 4.4.

For the Success Runs example, the traces were produced by simulating the automaton
with 4 states starting from x1 = 1. Deterministic behavior guarantees that every state
generates its number as an output. Hence, the resulting trace consists of {1, 2, 3, 4}.
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Algorithm 4.1: HMM Learn (y, N , Υ, ε)
1 initialize H∗= (A,C, π) randomly
2 repeat
3 H =H∗;
4 (* E-Step *)
5 αi(1) =πici(y1); αi(t) = ci(yt)

∑N
j=1 αj(t−1)aji; ∀i=1:N, t=2:T //Fwd

6 βi(T ) = 1; βi(t) =
∑N
j=1 βj(t+ 1)aijcj(yt+1); ∀i=1:N, t=1:T−1 //Bwd

7 γi(t) =αi(t)βi(t)/
∑N
j=1 αj(t)βj(t); ∀i=1:N, t=1:T //Fwd-Bwd

8 ξij(t) =αi(t)aijβj(t+ 1)cj(yt+1)/
∑N
k=1 αk(t)βk(t); ∀i, j=1:N, t=1:T

9 (* M-Step *)
10 π∗i = γi(1); ∀i=1:N
11 a∗ij =

∑T−1
t=1 ξij(t)/

∑T−1
t=1 γi(t); ∀i, j=1:N

12 c∗iy =
∑T
t=1 1yt=yγi(t)/

∑T
t=1 γi(t); ∀i=1:N, y ∈ Υ

13 until ( L(H∗)− L(H) ≤ ε );
14 return (H∗)

Table 4.1: HMM modeling with a uniform transition matrix for a Success Runs automaton
with 4 states and 4 observations

Initial C 1 2 3 4 Learned C 1 2 3 4
x1 = 1 0.5 0.5 0 0 x1 = 1 0.6 0.4 0 0
x2 = 2 0 0.5 0.5 0 x2 = 2 0 0 1.0 0
x3 = 3 0 0 0.5 0.5 x3 = 3 0 0 0 1.0
x4 = 4 0.5 0 0 0.5 x4 = 4 0 0 0 1.0

The transition matrix A was initialized as uniform: aij = 0.25 ∀i, j. The experiments
with observation matrix C in Table 4.1 show that the closer our assumption about the
system to reality the more accurate our learning results are. Since the Baum-Welch
algorithm used for training an HMM is a local iterative hill-climbing method, initial
choice of observation matrix is crucial.

4.4 State Estimation

Algorithm 4.1 uses the entire observation sequence y to a posteriori compute the prob-
ability P (Xt = xi | y,H). If, however, one has the observation y only up to time T = t,
this becomes a forward state-estimation algorithm:

P (Xt = xi | y,H) = αi(t)/
∑N
j=1 αj(t) ∀i=1:N
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Figure 4.4: HMM modeling a single thread of the Dining Philosophers program.

In practice, this algorithm may be inefficient, and an approximate version of it based on
ISam is preferred. The key idea is as follows. Each sample, also called a particle, takes a
random transition from its current state Xt =xi to a next state Xt+1 =xj according to aij .
Its importance (weight) cj(yt+1) is thereafter used in a resampling phase which discards
particles that poorly predicted yt+1. ISam is therefore a particle filtering algorithm.

Initially distributing the K particles according to π confers on ISam two salient properties:
1) The K particles are always distributed among the most promising states; and 2) When
K approaches infinity, the probability P (Xt =xi | y,H) is accurately estimated by the
average number of particles in state xi.

In addition to the HMM H identified as discussed above, we also assume that the rare
property of interest is given as a DFA. The DFA D accepts the output of the HMM
H as its input, and it is run as a consequence in conjunction with H. Formally, this
corresponds to the parallel composition of H and D as shown in Algorithm 4.2. This
composition is used by ISpl to determine the levels used by the control algorithm.

The input to Estimate is the number of particles K, the HMM H, and the DFA D.
Its local state is a configuration of particles (x, s, w), containing for each particle i, the
state xi in the HMM, the state si in the DFA, and a weight wi. The initial state x is
distributed according to π, the initial state s is equal to s0, and the initial weight w is
equal to 1. On every output y thrown by the CPS, Estimate calls nextEstimate to get
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Algorithm 4.2: Estimate (K,H,D)
1 xi = sample(π); si = s0; wi = 1; ∀i= 1:K
2 while (true) do
3 on y do (x, s, w)=nextEstimate(K, y, x, s, w,A,B,C);
4 end

the next particle configuration.

Algorithm 4.3: PC nextEstimate (K, y, x, s, w,A,B,C)
1 xi = sample(A(xi)); si =B(si, y); wi =wiC(xi, y); ∀i= 1:K
2 normalize(w);
3 if (1/

∑K
i=1w

2
i �K) then (x, s, w) = resample(x, s, w)

4 return (x, s, w)

NextEstimate works as described at the beginning of this section. For each particle i,
it samples the next state xi from A(xi), computes the next state si as B(si, y), and
computes the next weight wi. To improve accuracy, this weight is multiplied with its
previous value. NextEstimate then normalizes w and resamples the particles if necessary.
It returns the new particle configuration PC.

4.5 Feedback Control
Given a system model H and a safety property ϕ = FTψ, where ϕ holds true if and only
if, within time T , ψ is true, a statistical model checker aims at estimating the probability
P (ϕ |H) of H satisfying ϕ. The property ψ is an atomic expression over the variables of
H and can be evaluated using the observations of system. Assuming that we can start,
pause, and resume the system from a state reached so far, we collect the feedback in
a form of observations after each intermittent run. This allows us to smoothly direct
statistical verification towards the desired property.

If ϕ is a rare event, i.e. its satisfaction probability in H is very low, the ISpl [KH51,
GHSZ99, JLS13] seeks to decompose ϕ into a set ofM formulas ϕ1, . . ., ϕM , with ϕ0 ≡ >,
also called levels, such that:

P (ϕ |H) = P (ϕM |ϕM−1, H) ·P (ϕM−1 |ϕM−2, H) · . . . ·P (ϕ1 |ϕ0, H),

where ∀k = 1:M ϕk = ϕk−1∧FTkψk =
∧k
`=1 FT`ψ`. Time bounded properties are defined

based on the system simulation trace. Thus, Tk =
∑k
j=1 tj and T =

∑n
i=1 Ti, meaning

the system spent time ti in state xi before transitioning to state xi+1. By construction,
T = TM 6 . . . 6 T2 6 T1 and ψ16k6M is defined as a set of increasing atomic properties.
For k = 1:M P (ϕk |ϕk−1, H) are considerably larger and essentially equal. If Ω = {ωj}Nj=1
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is a set of simulation traces then from ϕ = ϕM ⇒ ϕM−1 ⇒ . . .⇒ ϕ0 ≡ > we can induce
a set of strictly nested paths: ΩM ⊂ ΩM−1 ⊂ . . . ⊂ Ω0 ≡ Ω, ω |= ϕ0 ∀ω ∈ Ω, where
Ωk = {ω ∈ Ω : ω |= ϕk}. Effectiveness of ISpl largely depends on the choice of levels. The
resulting estimated probability being a product of the estimates at each level minimizes
the cumulative variance of the estimation1:

γ =
M∏
k=1

P (ω |= ϕk | ω |= ϕk−1) .

The intractable problem of model checking P (ϕ |H) is thus reduced to a set of more
tractable estimation problems P (ϕk |ϕk−1, H), computation of which may still be hard.
ISpl, like ISam, is therefore using an approximate particle-filtering technique. Like ISam,
it starts N particles of H from level ϕk−1, runs them for at most T − |ωk−1

j | time for
j= 1:N , and computes their scores S(ωkj ) for j= 1:N , according to how close their traces
ωkj are to satisfying ϕk.

The number of particles satisfying ϕk divided by N approximates the probability
P (ϕk |ϕk−1, H). Moreover, the particles with the lowest scores get discarded and cloned
starting from the current level. The estimation of P (ϕk+1 |ϕk, H) is then initiated with
the resulting sample of the particles. The process continues up to ϕM .

Like ISam, ISpl always directs the particles towards the most promising parts in H, and
when N tends to infinity, the estimate it computes becomes exact. ISpl thus closely
resembles ISam, except for the way it computes the particle weights (which have a
different meaning) and for the idea of decomposing ϕ.

While various decomposition ideas were presented, for example in [GHSZ99, JLS13], the
automatic derivation of ϕ1, . . ., ϕM , however, has so far proved elusive. Moreover, this
becomes a grand challenge if one is given a real CPS, say R, instead of a model H. The
only thing one can typically do with R is to start it from a (most often opaque) state,
run it for some time T , observe during this time its output y, and possibly store its last
(again opaque) state for later reuse.

Fortunately, as we have seen above that this is enough for identifying an HMM H of CPS
R, whose dimension N is chosen such that: (1) It best reproduces y; and (2) A dimension
of N+1, does not significantly improve its predictions. The product of the HMM H with
DFA D encoding the safety property ϕ is a Markov chain MC, whose states are marked
as accepting according to D. The use of D instead of ϕ is with no loss of generality, as ϕ
is a safety property, and its satisfying traces are the accepting words of D.

The states of MC are computed by ISam and they can be used to compute the levels
ϕk. For this purpose, we apply offline the statistical model checker of the PRISM model-
checking suite (prismmodelchecker.org) to H. This is feasible since the size of H is

1Importance splitting has been first used in [KH51] to estimate the probability that neutrons would
pass through certain shielding materials. The distance traveled in the shield can then be used to define a
set of increasing levels 0 = `1 <`2 < · · ·<`n= τ that may be reached by the paths of neutrons, with the
property that reaching a given level implies having reached all the lower levels.
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Algorithm 4.4: AdaptiveLevels (MC,N,Nk, t, S(ω))
1 Let τϕ = min {S(ω) | ω |= ϕ} be the minimum score of paths that satisfy ϕ
2 and Nk be the minimum number of particles retained at each step
3 k = 1; s0 = 0; ∀i = 1:N ωkj = simulate(MC, s0, T );
4 repeat
5 Q =

{
S(ωkj ),∀j ∈ {1, . . . , N}

}
; Q∗ = sort(Q, ascend)

6 Find minimum τk ∈ Q∗ : |{τ ∈ Q∗ : τ > τk}| > Nk; τk = min(τk, τϕ);
7 Ik =

{
j ∈ {1, . . . , N} : S(ωkj ) > τk

}
;

8 γ̃k = |Ik|/N ;
9 ∀j ∈ Ik, ωk+1

j = ωkj ;
10 for j /∈ Ik do
11 Choose uniformly randomly ` ∈ Ik;
12 ω̃k+1

j = min
|ω|

{
ω ∈ pref (ωk` ) : S(ω) = τk−1

}
;

13 ω̂k+1
j = simulate(MC, τk, T − |ω̃k+1

j |) with prefix ω̃k+1
j ;

14 end
15 M = k; k = k + 1;
16 until τk > τϕ;
17 γ̃ =

∏M
k=1 γ̃k

small. In a simple and intuitive way, the level of a state s is computed as the minimum
distance to an accepting state. In a more refined version, the level of s is computed as
the probability of reaching an accepting state from s. Below we describe our scoring
(leveling) algorithm in more detail.

4.6 Scoring

The process of computing levels for ISpl begins by an offline reachability analysis first
proposed in [BGK+12]. With this approach, we first compose the system HMM H with
property DFA D to obtain a Discrete-Time Markov Chain (DTMC) MC. We then
formulate the problem of reaching an accepting state of the DFA as a reward-based
reachability query, and finally execute the PRISM model checker to compute the expected
number of steps (distance) required to reach an accepting state from any compound state
(i, j) of MC.

Through this reward-based bounded-reachability analysis, for each DTMC state (i, j),
i∈{1, 2, . . . , Nh}, j ∈{1, 2, . . . , Nd}, we calculate the distance δi,j from an accepting state.
We subsequently normalize all the distances by dividing them with max(δi,j) and subtract
the normalized distances from 1. The result is a numerical measure of the “closeness” of
every state (i, j) to the satisfaction of the property. We will call this measure a level and
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Figure 4.5: Compound states (i, j) of the parallel composition H ×D, ordered on a scale
from 0 to 1 based on their potential for satisfying the property.

denote it as Li,j such that:

Li,j = 1− δi,j
max(δi,j)

In a state farthest from the satisfaction of the property, L = 0, whereas in an accepting
state, L = 1. Having defined the level of all the states, we can order them numerically.
In the specific case of our Dining Philosophers example, after performing the PRISM
reachability analysis, we obtain the ordering of states shown in Fig. 4.5.

The levels Li,j are computed in advance of executing FC-SSC, and, in some cases, they
might be too coarse for a good estimation of the rare event probability by ISpl. To
help refine the estimation process, we use Algorithm 4.4, proposed by [JLS14], which
adaptively derives the levels in a way which seeks to minimize the variance of the final
estimate. In the context of this algorithm, a level is the value of the score function S(ω),
whose purpose is to help discriminate good execution paths from bad ones with respect
to a given property.

Intuitively, the score is a weighted average of precalculated levels Li,j , whereby the value
of each level is weighted with the probability that, at time t, the system has reached that
particular level.

4.7 Experimental Results

To investigate the behavior of FC-SSC for the case of Dining Philosophers, we performed
multiple experiments on a PC computer with a dual-core Intel R© Pentium R© G2030 CPU
running at 3.0 GHz with 4 GB of RAM, running Linux. In the preparatory phase, we
first executed the program for an extended period of time, collecting the traces of emitted
symbols. These traces were subsequently used with UMDHMM [Kan] to learn an HMM
for the program. This HMM is shown in Fig. 4.4. The Success Runs Markov chain
was simulated in Matlab R2015a. Then we used Matlab HMM Toolbox, employing
Baum-Welsh algorithm, to build the learning curve and analyze learned transition and
observation matrices. We further implemented Algorithm 4.4 in Matlab and executed it
on the collected traces of the Success Runs automaton. The Climbing Rush was modeled
and simulated in Matlab R2017a and further executed in Storm model-checker [DJKV17]
for comparison.
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Figure 4.6: FC-SSC in action. Shown is the process of estimating the probability of rare
event expressed by the temporal property ϕ = FT eat for different values of T in the
Dining Philosophers program with N = 100 threads. ISpl was run with 1000 traces and
ISam used 280 particles for state estimation.

4.7.1 Dining Philosophers

We have executed the program with 100 threads in order to find, within a short time
T , the probability that a particular one of them satisfies the property ϕ = FT eat. We
repeated the experiment for different values of T , varying from 1 to 3 seconds. The
results are summarized in Fig. 4.6.

In Fig. 4.6, we can observe that in the case of the T = 1s, even with a fairly number of
sample ISpl was not able to cross the first level boundary. This is not a failing of the
ISpl process, rather, it can be attributed to the fact that the startup time of the Dining
Philosophers program takes a big fraction of this 1 second. Thus, it is difficult to observe
any events at all from the program in such a short time, no matter how many samples
are used. A rigorous timing analysis may find that observing the eat event from any
philosopher within the first second is impossible.

4.7.2 Success Runs

If s is a system state then the property of interest is ϕ = FT (x = M). Similar to
the Dining Philosophers example it is essential to first decompose the property into
a sequence of nested subproperties: ϕ = ϕM ⇒ ϕM−1 ⇒ . . . ⇒ ϕ0 ≡ >, where
∀k = 1:M ϕk = Fk−2(x= k − 1) ∧ F1(x= 1) =

∧k
`=1 F`(x= `). For the Success Runs
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Figure 4.7: Adaptive levels for the property ϕ = F3(x = 4) of the Success Runs automaton
4x4 (p = 0.5, N = 10, Nk = 1) in 3 iterations of importance splitting: black bars are the
levels, colorful lines are the paths to the maximum states reached by the particles within
time bound.

the levels will coincide with the states of the automaton. Therefore, we can denote a
level-based score function the following way:

S(ω) = max
k=1:M

{k : ω |= ϕk} ,

It satisfies the properties of a general score function:

S(ω ∈ Ω1) =
{

1, ω |= ϕ1,
0, otherwise, S(ω ∈ Ω2) = Iω|=ϕ1 + Iω|=ϕ2 =


2, ω |= ϕ2,
1, ω |= ϕ1 ∧ ¬ϕ2,
0, otherwise, . . .

Although a property ϕ = F3(x = 4) is trivial, applying the Algorithm 4.4 on it allows to
clearly illustrate the adaptive process of determining levels according to initial parameters
(see Fig. 4.7).

4.8 Discussion

It is interesting to note that there are several critical points in the ISpl process at which the
probabilities fall significantly. Incidentally, these critical points correspond to the levels
calculated by PRISM in the initial reachability analysis and shown in Fig. 4.5. Between
these levels, the scoring function guides the ISpl process slowly forward, by discarding
only the traces with the very lowest score. As such, the traces with the best potential
(i.e., the highest scores) will be brought to the level boundary. If there is a critical mass
of traces with scores greater than the level boundary, these will be multiplied through
resampling and enable the ISpl process to continue towards its intended destination,
which is the satisfaction of the property. If, on the other hand, only a small number
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of traces cross the level boundary, chances are that the ISpl process will be left with a
degenerate set of traces all having the same score, in which case no further progress can
be made.

Our results collectively show that FC-SSC typically provides a very good approximation
of the actual probability and addresses the difficult CPS problem of steering a program
along unlikely but successful paths with respect to a rare property. It also, as observed in
the case of the Success Runs and Climbing Rush Markov chains, can be used to provide
a lower bound γ̃ such that the system in question likely satisfies the qualitative property
P (ϕ | H) > γ̃. However, the question arises about the sufficient rare event statistics
for increasing the accuracy of the model checking algorithm. It seems reasonable to
formulate the dependency between error estimate and initial data quality.

4.9 Chapter Summary
In this chapter, we introduced feedback-control statistical system checking, or FC-SSC for
short, a new approach to statistical model checking that exploits principles of feedback-
control for the analysis of CPS. To the best of our knowledge, FC-SSC is the first
statistical system checker to efficiently estimate the probability of rare events in realistic
CPS applications or in any complex probabilistic program whose model is either not
available, or is infeasible to derive through static-analysis techniques. FC-SSC is also
a new and intuitive approach for combining ISam and ISpl as two distinct components
of a feedback controller. ISam and ISpl were originally developed for the same purpose,
rare-event estimation. With FC-SSC, we have shown how they can be synergistically
combined.

A key component of our current approach is that we learn an HMM of a representative
process (or thread) of the system we are attempting to verify. We then compose this
HMM with the DFA of the property under investigation to obtain an DTMC, which we
then subject to level-set analysis. The benefit of this approach is that the representative
process is small enough to render the HMM-learning process and subsequent analysis
readily tractable, as we have carefully avoided the pitfalls of state explosion. The price to
paid in doing so is that the level-set analysis is performed on a local process-level basis,
possibly resulting in an increase in the number of particles that must be considered in
the subsequent importance-sampling phase.

Due to the noise, the result of particle filtering is a distribution of states. Current
importance splitting algorithm starts from the state with the highest probability in the
estimated distribution. An optimal controller from the belief-states could be designed
using dynamic programming techniques. First, partial observability would be introduced
into the model and an MDP would be newly formulated over belief states. Then one
would perform value iteration [How60] for this partially observable MDP [CKL94]. We
could modify our approach by asking importance splitting to analyze a set of most
probable states and start simulation at each level from all state in the set. These lines of
investigation will be a focus of our future work.
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CHAPTER 5
Plan Synthesis for Reachability

As the next step we attacked the following research questions:

1. Quantitative verification of a model design

A well-known stochastic method such as learning a HMM [Rab89a] of a system
has been adopted by various technological processes. Our thorough investigation
in [KJL+16b] of the Baum-Welch algorithm used for this purpose led to the question
of developing a more accurate inference-based methodology. For the time-being,
we assume a stochastic model is given and investigate how control approaches can
improve statistical verification of the model.

– Learn a stochastic model of the system.

– Verify logical properties in a stochastic environment.

2. Quantitative verification of a deployed system

Our simulation model described in [KJL+16b] is based on the following assumptions:
the control unit can start, pause, or resume the execution. In comparison, when
the drones are deployed, when the birds are flying, the latter is no longer feasible.
We need to exploit the ways statistical verification can help provide guarantees for
control reaching a globally safe and optimal state of the system. We must solve the
tasks below:

– Estimate the system state.

– Perform MPC.

– Detect the sources of stochasticity.

– Provide statistical guarantees for MPC.
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3. Control at runtime
It is extremely important to analyze behavior of a system in real world in order to
choose an optimal strategy. Safety mechanisms have to be triggered with care for
the system to be redeployed afterwards. In contrast to the simulation environment,
when the system is deployed we face different questions:

– What measures can be applied at runtime?
– How to use collected execution output?

In this chapter, we devise a very general adaptive, receding-horizon synthesis algorithm
(ARES) that, given an MDP and one of its initial states, generates an optimal plan (action
sequence) taking that state to a state whose cost is below a desired threshold. In fact,
ARES implicitly defines an optimal, online-policy, synthesis algorithm that could be used
in practice if plan generation can be performed in real-time.

ARES makes repeated use of PSO [KE95] to effectively generate a plan. This was in
principle unnecessary, as one could generate an optimal plan by calling PSO only once,
with a maximum plan-length horizon. Such an approach, however, is in most cases
impractical, as every unfolding of the MDP adds a number of new dimensions to the
search space. Consequently, to obtain an adequate coverage of this space, one needs a
very large number of particles, a number that is either going to exhaust available memory
or require a prohibitive amount of time to find an optimal plan.

A simple solution to this problem would be to use a short horizon, typically of size two
or three. This is indeed the current practice in MPC [GPM89]. This approach, however,
has at least three major drawbacks. First, and most importantly, it does not guarantee
convergence and optimality, as one may oscillate or become stuck in a local optimum.
Second, in some of the steps, the window size is unnecessarily large thereby negatively
impacting performance. Third, in other steps, the window size may be not large enough
to guide the optimizer out of a local minimum (see Fig. 5.1 (left)). One would therefore
like to find the proper window size adaptively, but the question is how one can do it.

Inspired by ISpl, a sequential Monte-Carlo technique for estimating the probability of
rare events, we introduce the notion of a level-based horizon (see Fig. 5.1 (right)). Level
`0 is the cost of the initial state, and level `m is the desired threshold. By using a state
function, asymptotically converging to the desired threshold, we can determine a sequence
of levels, ensuring convergence of ARES towards the desired optimal state(s) having a
cost below `m =ϕ.

The levels serve two purposes. First, they implicitly define a Lyapunov function, which
guarantees convergence. If desired, this function can be explicitly generated for all states,
up to some topological equivalence. Second, the levels help PSO overcome local minima
(see Fig. 5.1 (left)). If reaching a next level requires PSO to temporarily pass over a
state-cost ridge, ARES incrementally increases the size of the horizon, up to a maximum
length.
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Figure 5.1: Left: If state s0 has cost `0, and its successor-state s1 has cost less than `1,
then a horizon of length 1 is appropriate. However, if si has a local-minimum cost `i, one
has to pass over the cost ridge in order to reach level `i+1, and therefore ARES has to
adaptively increase the horizon to 3. Right: The cost of the initial state defines `0 and
the given threshold ϕ defines `m. By choosing m equal segments on an asymptotically
converging (Lyapunov) function (where the number m is empirically determined), one
obtains on the vertical cost-axis the levels required for ARES to converge.

Another idea imported from ISpl is to maintain n clones of the initial state at a time,
and run PSO on each of them (see Fig. 5.5). This allows us to call PSO for each clone
and desired horizon, with a very small number of particles per clone. Clones that do not
reach the next level are discarded, and the successful ones are resampled. The number of
particles is increased if no clone reaches a next level, for all horizons chosen. Once this
happens, we reset the horizon to one, and repeat the process. In this way, we adaptively
focus our resources on escaping from local minima. At the last level, we choose the
optimal particle (a V-formation in case of flocking) and traverse its predecessors to find
a plan.

We assess the rate of success in generating optimal plans in form of an (ε, δ)-approximation
scheme, for a desired error margin ε, and confidence ratio 1−δ. Moreover, we can use
the state-action pairs generated during the assessment (and possibly some additional
new plans) to construct an explicit (tabled) optimal policy, modulo some topological
equivalence. Given enough memory, one can use this policy in real time, as it only
requires a table look-up.

To experimentally validate our approach, we have applied ARES to the problem of V-
formation in bird flocking. The cost function to be optimized is defined as a weighted
sum of the (flock-wide) clear-view, velocity-alignment, and upwash-benefit metrics. Clear
view and velocity alignment are more or less obvious goals. Upwash optimizes energy
savings. By flapping its wings, a bird generates a trailing upwash region off its wing tips;
by using this upwash, a bird flying in this region (left or right) can save energy. Note
that by requiring that at most one bird does not feel its effect, upwash can be used to
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define an analog version of a connected graph.

We ran ARES on 8,000 initial states chosen uniformly and at random, such that they
are packed closely enough to feel upwash, but not too close to collide. We succeeded to
generate a V-formation 95% of the time, with an error margin of 0.05 and a confidence
ratio of 0.99. These error margin and confidence ratio dramatically improve if we consider
all generated states and the fact that each state within a plan is independent from the
states in all other plans.

5.1 V-Formation MDP
We represent a flock of birds as a dynamically evolving system. Every bird in our
model [GPR+14] moves in 2-dimensional space performing acceleration actions determined
by a global controller. Let xi(t),vi(t) and ai(t) be 2-dimensional vectors of positions,
velocities, and accelerations, respectively, of bird i at time t, where i∈{1, . . . , B}, for a
fixed b. The discrete-time behavior of bird i is then

vi(t+ 1) = vi(t) + ai(t),
xi(t+ 1) = xi(t) + vi(t). (5.1)

The controller detects the positions and velocities of all birds through sensors, and uses
this information to compute an optimal acceleration for the entire flock. A bird uses its
own component of the solution to update its velocity and position.

We extend this discrete-time dynamical model to a (deterministic) MDP by adding a
cost (fitness) function1 based on the following metrics inspired by [YGST16b]:

• Clear View (CV). A bird’s visual field is a cone with angle θ that can be blocked
by the wings of other birds. We define the clear-view metric by accumulating
the percentage of a bird’s visual field that is blocked by other birds. Fig. 5.2
(left) illustrates the calculation of the clear-view metric. The optimal value in a
V-formation is CV∗= 0, as all birds have a clear view.

• Velocity Matching (VM). The accumulated differences between the velocity of each
bird and all other birds, summed up over all birds in the flock defines VM. Fig. 5.3
(middle) depicts the values of VM in a velocity-unmatched flock. The optimal
value in a V-formation is VM∗= 0, as all birds will have the same velocity (thus
maintaining the V-formation).

• Upwash Benefit (UB). The trailing upwash is generated near the wingtips of a
bird, while downwash is generated near the center of a bird. We accumulate all
birds’ upwash benefits using a Gaussian-like model of the upwash and downwash

1A classic MDP [RN10] is obtained by adding sensor/actuator or wind-gust noise, which are the case
we are addressing in the follow-up work.
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Figure 5.2: Illustration of the clear view metric. Bird i’s view is partially (left) and
completely (right) blocked by birds j and k, consequently its clear view is CV = (α+β)/θ
(left) and CV = 1 (right), respectively.

Figure 5.3: Values of the velocity matching metric indicate the alignment of birds’
velocities. For the velocity-unmatched flock (left), VM = 6.2805, and for the velocity-
matched flock (right), VM = 0.

region, as shown in Fig. 5.4 (right) for the right wing. The maximum upwash a
bird can obtain has an upper bound of 1. For bird i with UBi, we use 1−UBi as its
upwash-benefit metric, because the optimization algorithm performs minimization
of the fitness metrics. The optimal value in a V-formation is UB∗= 1, as the leader
does not receive any upwash.

Finding smooth and continuous formulations of the fitness metrics is a key element of
solving optimization problems. The PSO algorithm has a very low probability of finding
an optimal solution if the fitness metric is not well-designed.

Let c(t) = {ci(t)}Bi=1 = {xi(t),vi(t)}Bi=1 ∈R be a flock configuration at time-step t. Given
the above metrics, the overall fitness (cost) metric J is of a sum-of-squares combination
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Figure 5.4: Upwash and downwash generated by a bird located at position x = 0, y = 0
with velocity along the −y axis. Brighter color indicates higher upwash, whereas darker
color indicates higher downwash.

of VM, CV, and UB defined as follows:

J(c(t),ah(t), h) = (CV(cha(t))− CV∗)2 + (VM(cha(t))−VM∗)2

+ (UB(cha(t))−UB∗)2, (5.2)

where h is the receding prediction horizon (RPH), ah(t)∈R is a sequence of accelerations
of length h, and cha(t) is the configuration reached after applying ah(t) to c(t). Formally,
we have

cha(t) = {xha(t),vha(t)} = {x(t) +
h(t)∑
τ=1

v(t+ τ),v(t) +
h(t)∑
τ=1

aτ (t)}, (5.3)

where aτ (t) is the τth acceleration of ah(t). A novelty of this chapter is that, as described
in Section 5.2, we allow RPH h(t) to be adaptive in nature.

The fitness function J has an optimal value of 0 in a perfect V-formation. The main goal
of ARES is to compute the sequence of acceleration actions that lead the flock from a
random initial configuration towards a controlled V-formation characterized by optimal
fitness in order to conserve energy during flight including optimal combination of a clear
visual field along with visibility of lateral neighbors. Similar to the centralized version of
the approach given in [YGST16b], ARES performs a single flock-wide minimization of J
at each time-step t to obtain an optimal plan of length h of acceleration actions:

opt-ah(t) = {opt-ahi (t)}bi=1 = arg min
ah(t)

J(c(t),ah(t), h). (5.4)

44



5.1. V-Formation MDP

The optimization is subject to the following constraints on the maximum velocities
and accelerations: ||vi(t)||6vmax, ||ahi (t)||6 ρ||vi(t)|| ∀ i∈{1, . . . , B}, where vmax is
a constant and ρ∈ (0, 1). The above constraints prevent us from using mixed-integer
programming, we might, however, compare our solution to other continuous optimization
techniques in the future. The initial positions and velocities of each bird are selected at
random within certain ranges, and limited such that the distance between any two birds
is greater than a (collision) constant dmin, and small enough for all birds, except for at
most one, to feel the UB. In the following sections, we demonstrate how to generate
optimal plans taking the initial state to a stable state with optimal fitness.

5.1.1 Particle Swarm Optimization

PSO is a randomized approximation algorithm for computing the value of a parameter
minimizing a possibly nonlinear cost (fitness) function. Interestingly, PSO itself is inspired
by bird flocking [KE95]. Hence, PSO assumes that it works with a flock of birds.

Note, however, that in our running example, these birds are “acceleration birds” (or
particles), and not the actual birds in the flock. Each bird has the same goal, finding
food (reward), but none of them knows the location of the food. However, every bird
knows the distance (horizon) to the food location. PSO works by moving each bird
preferentially toward the bird closest to food.

ARES uses Matlab-Toolbox particleswarm, which performs the classical version of
PSO. This PSO creates a swarm of particles, of size say p, uniformly at random within a
given bound on their positions and velocities. Note that in our example, each particle
represents itself a flock of bird-acceleration sequences {ahi }Bi=1, where h is the current
length of the receding horizon. PSO further chooses a neighborhood of a random size for
each particle j, j= {1, . . . , p}, and computes the fitness of each particle. Based on the
fitness values, PSO stores two vectors for j: its so-far personal-best position xjP (t), and
its fittest neighbor’s position xjG(t). The positions and velocities of each particle j in the
particle swarm 16 j6 p are updated according to the following rule:

vj(t+ 1) = ω · vj(t) + y1 · u1(t+ 1)⊗ (xjP (t)− xj(t))
+ y2 · u2(t+ 1)⊗ (xjG(t)− xj(t)), (5.5)

where ω is inertia weight, which determines the trade-off between global and local
exploration of the swarm (the value of ω is proportional to the exploration range); y1
and y2 are self adjustment and social adjustment, respectively; u1,u2 ∈Uniform(0, 1)
are randomization factors; and ⊗ is the vector dot product, that is, ∀ random vector z:
(z1, . . . , zB)⊗ (xj1, . . . ,x

j
B) = (z1xj1, . . . , zBxjB).

If the fitness value for xj(t+ 1) = xj(t) + vj(t+ 1) is lower than the one for xjP (t), then
xj(t+ 1) is assigned to xjP (t+ 1). The particle with the best fitness over the whole swarm
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5. Plan Synthesis for Reachability

becomes a global best for the next iteration. The procedure is repeated until the number
of iterations reaches its maximum, the time elapses, or the minimum criteria is satisfied.
For our bird-flock example we obtain in this way the best acceleration.

Let us look closer at the state-transition diagram of our process and transition probability
densities. We stretch all the particles of the swarm into a chain where only one particle
j = 1, 2, . . . , p moves at each time step t:

j =
{
t(mod p), if t(mod p) 6= 0,
p, otherwise. (5.6)

In other words, particles make their movements periodically. And update rules for vectors
of velocities and positions for the fitness function are defined as follows:

vj(t+ 1) =


ω(t+ 1)vj(t)+
+U(0,y1)(t+ 1)⊗ (xjP (t)− xj(t))+
+U(0,y2)(t+ 1)⊗ (xjG(t)− xj(t)), if j satisfies (5.6),
0, otherwise.

(5.7)

xj(t+ 1) = xj(t) + vj(t+ 1) ∀j = 1, 2, . . . , p.

Conditional transition densities p(s(t+ 1) | s(t)) for this process can be formulated if we
take positions and velocities of all flocks in the swarm as a state at time t:

s(t) = (x1(t),v1(t); x2(t),v2(t); . . . ; xp(t),vp(t)),

where t satisfies (5.6). For the stochastic process to be Markovian its transition densities
have to depend on the most recent time only, meaning

p(s(t+ 1) | s(t), s(t− 1), . . . , s(1)) = p(s(t+ 1) | s(t)). (5.8)

By construction, at time step t we have all the necessary information to calculate fitness
function and make a transition into the next state by updating positions and velocities
of the particles.

5.1.2 Importance Splitting for Planning and Control

Random sampling approaches, such as the additive-error approximation algorithm
[GPR+14], are bound to fail (are intractable) in this case, as they would require an
enormous number of samples to estimate p with low-variance.

ISpl is a way of decomposing the estimation of p. In ISpl, the sequence S0, S1, . . . of
sets of states is defined so that the conditional probabilities pi = P(Si |Si−1) of going
from one level, Si−1, to the next one, Si, are considerably larger than p, and essentially
equal to one another. The resulting probability of the rare event is then calculated as
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5.1. V-Formation MDP

the product p=
∏k
i=1 pi of the intermediate probabilities. The levels can be defined

adaptively [KJL+16b].

To estimate pi, ISpl uses a swarm of particles of size N , with a given initial distribution
over the states of the stochastic process. During stage i of the algorithm, each particle
starts at level Si−1 and traverses the states of the stochastic process, checking if it reaches
Si. If, at the end of the stage, the particle fails to reach Si, the particle is discarded.
Suppose that Ki particles survive. In this case, pi =Ki/N . Before starting the next stage,
the surviving particles are resampled, such that IS once again has N particles. Whereas
ISpl is used for estimating probability of a rare event in a Markov process, we use it here
for synthesizing a plan for a controllable Markov process, by combining it with ideas from
controller synthesis (receding-horizon control) and nonlinear optimization (PSO).

First, the algorithm runs several simulations of the system for a fixed period of time.
Next, it assigns a score to each simulation trace as a value of a scoring function that
measures the distance to the property satisfaction. Then the level is determined as the
lowest score that was reached by a fixed ratio of all the traces. By fixing the number of
traces discarded at each level the method minimizes the variance of the final estimate.

Prefixes of the traces with the lowest scores, i.e., all the previous positions and velocities,
are further replaced by random sampling from the more successful ones. Resampling
procedure increases the chances of more promising simulations reach the final goal.

5.1.3 Property in Temporal Logic

For an arbitrary initial configuration of birds we can represent the process of a dynamical
system stabilizing into V-formation with PSO as a stochastic scheduler as an MDP. As
it is described in previous section, for preserving a Markovian property it is necessary for
the states of the process to contain sufficient information for making a transition. Let
c(t) = {x(t),v(t)} be the state of the process. The finite set of actions is composed of
velocity adjustments a(t) sampled uniformly at random by PSO at each step subject
to constraints ||a(t)|| ≤ δ||v(t)||. We use fitness function to specify our final goal that
corresponds to reaching V-formation:

Fitness(c(t),a(t), a(t)) 6 ϕ. (5.9)

Evaluating the fitness at the time-step t the process chooses the best a(t) provided by
PSO as a control action to proceed to the next state c(t+ 1). This way we can define a
stochastic decision process that exploits fitness as a cost function and exhibits Markov
property for each state:

P[c(t+ 1) | c(t),a(t), c(t− 1),a(t− 1) . . . , c(1),a(1)] = P[c(t+ 1) | c(t),a(t)].

Representing the flocking problem as an MDP [RN10] gave us an incentive to use ISpl as
a tool to overcome state-space explosion as well as steer our dynamical model towards
the desired target (5.10) in a fast and efficient fashion.
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5. Plan Synthesis for Reachability

ϕ = F`maxG(Fitness(c,a, a) 6 ε) (5.10)

5.1.4 Problem Definition

Definition 3 The optimal plan synthesis problem for an MDP M, an arbitrary
initial state s0 ofM, and a threshold ϕ is to synthesize a sequence of actions ai of length
16 i6m taking s0 to a state s∗ such that cost J(s∗)6ϕ.

5.2 The ARES Algorithm

One could, in principle, solve the optimization problem defined above by calling the PSO
only once, with a horizon h inM equaling the maximum length m allowed for a plan.
This approach, however, tends to explode the search space, and is therefore in most cases
intractable. Indeed, preliminary experiments with this technique applied to our running
example could not generate any convergent plan.

A more tractable approach is to make repeated calls to PSO with a small horizon length
h. The question is how small h can be. The current practice in MPC is to use a fixed
h, 16h6 3 (see the outer loop of Fig. 5.5, where resampling and conditional branches
are disregarded). Unfortunately, this forces the selection of locally-optimal plans (of
size less than three) in each call, and there is no guarantee of convergence when joining
them together. In fact, in our running example, we were able to find plans leading to a
V-formation in only 45% of the time for 10, 000 random initial flocks.

Inspired by ISpl (see Fig. 5.1 (right) and Fig. 5.5), we introduce the notion of a level-based
horizon, where level `0 equals the cost of the initial state, and level `m equals the threshold
ϕ. Intuitively, by using an asymptotic cost-convergence function ranging from `0 to `m,
and dividing its graph in m equal segments, we can determine on the vertical axis a
sequence of levels ensuring convergence.

The asymptotic function ARES implements is essentially `i = `0 (m− i)/m, where m is
the bound on the number of time steps, but specifically tuned for each particle. Formally,
if particle k has previously reached level equaling Jk(si−1), then its next target level is
within the distance ∆k = Jk(si−1)/(m− i+ 1). In Fig. 5.5, after passing the thresholds
assigned to them, values of the cost function in the current state si are sorted in ascending
order {Ĵk}nk=1. The lowest cost Ĵ1 should be apart from the previous level `i−1 at least
on its ∆1 for the algorithm to proceed to the next level `i := Ĵ1.

The levels serve two purposes. First, they implicitly define a Lyapunov function, which
guarantees convergence. If desired, this function can be explicitly generated for all states,
up to some topological equivalence. Second, the levels `i help PSO overcome local minima
(see Fig. 5.1 (left)). If reaching a next level requires PSO to temporarily pass over a
state-cost ridge, then ARES incrementally increases the size of the horizon h, up to a
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Figure 5.5: Graphical representation of ARES, where blocks are processes, filled circles
are model instantiations (blue for alive and red crossed – for discarded), diamonds are
choices, yellow highlighting is for the ratio of particles from which samples are being
drawn with replacement to keep a constant population size.

maximum size hmax. For particle k, passing the thresholds ∆k means that it reaches a
new level, and the definition of ∆k ensures a smooth degradation of its threshold.

Another idea imported from ISpl and shown in Fig. 5.5, is to maintain n clones {Mk}nk=1
of the MDPM (and its initial state) at any time t, and run PSO, for a horizon h, on
each h-unfolding Mh

k of them. This results in an action sequence ahk of length h (see
Algo. 5.1). This approach allows us to call PSO for each clone and desired horizon, with
a very small number of particles p per clone.

To check which particles have overcome their associated thresholds, we sort the particles
according to their current cost, and split them in two sets: the successful set, having
the indexes I and whose costs are lower than the median among all clones; and the
unsuccessful set with indexes in {1, . . ., n} \I, which are discarded. The unsuccessful
ones are further replenished, by sampling uniformly at random from the successful set I
(see Algo. 5.2).

The number of particles is increased p= p+ pinc if no clone reaches a next level, for all
horizons chosen. Once this happens, we reset the horizon to one, and repeat the process.
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5. Plan Synthesis for Reachability

In this way, we adaptively focus our resources on escaping from local minima. From the
last level, we choose the state s∗ with the minimal cost, and traverse all of its predecessor
states to find an optimal plan comprised of actions {ai}16i6m that led MDPM to the
optimal state s∗. In our running example, we select a flock in V-formation, and traverse
all its predecessor flocks. The overall procedure of ARES is shown in Algo. 5.3.

Proposition 1 (Optimality and Minimality) (1) LetM be an MDP. For any initial
state s0 ofM, ARES is able to solve the optimal-plan synthesis problem forM and s0.
(2) An optimal choice of m in function ∆k, for some particle k, ensures that ARES also
generates the shortest optimal plan.

Proof 1 By induction, we can prove that the dynamic-threshold function ∆k ensures
that the initial cost in s0 is continuously decreased until it falls below ϕ.

m = 0 : Assume the value of the cost function in state s0 is `0 (see Fig. 5.1). We define
∆0 given the bound m on the time-steps we are allowed to take: ∆0 = `0

m . ARES requires
the next level `1 to be lower by at least ∆0: `1 ≤ `0 − `0

m < `0.

m = k : `i ≤ m−k−1
m−k `k−1 < `k−1.

m : We would like to reach the global optimum ϕ > 0 of the cost function no later than
the m’s level. Therefore ∆m = `m−1 − ϕ and, consequently, `m ≤ `m−1 − `m−1 + ϕ = ϕ.

Moreover, for an appropriate number of clones, by adaptively determining the horizon and
the number of particles needed to overcome ∆k, ARES always converges, with probability
1, to an optimal state, given enough time and memory.

By Def. 5.1.4, optimality of the shortest plan follows from above and the fact that ARES
always gives preference to the shortest horizon while trying to overcome ∆k.

The optimality referred to in the title of the chapter is in the sense of (1). One, however,
can do even better than (1), in the sense of (2), by empirically determining parameterm in

Algorithm 5.1: Simulate (M, h, i, {∆k, Jk(si−1)}nk=1)
1 foreachMk ∈M do
2 [ahk ,Mh

k ]← particleswarm(Mk, p, h); // Use PSO to determine the best next
action for the MDPMk with RPH h

3 Jk(si)← Cost(Mh
k ,a

h
k , h); // Compute the cost function applying the sequence of

optimal actions of length h
4 if Jk(si−1)− Jk(si) > ∆k then
5 ∆k ← Jk(si)/(m− i); // New level-threshold
6 end
7 end
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Algorithm 5.2: Resample ({Mh
k , Jk(si)}nk=1)

1 I ← Sort ascendingMh
k by their current costs; // Find indexes of MDPs whose costs

are below the median among all clones
2 for k = 1 to n do
3 if k /∈ I then
4 Sample r uniformly at random from I;Mk ←Mh

r ;
5 else
6 Mk ←Mh

k ; // Keep more successful MDPs unchanged
7 end
8 end

Algorithm 5.3: ARES
Input :M, ϕ, pstart, pinc, pmax, hmax,m, n
Output : {ai}16i6m // Synthesized optimal plans

1 Initialize `0 ← inf; {Jk(s0)}nk=1 ← inf; p← pstart; i← 1; h← 1; ∆k ← 0;
2 while (`i > ϕ) ∨ (i < m) do

// Find and apply best actions with RPH h

3 [{ahk , Jk(si),Mh
k}nk=1]←Simulate(M, h, i, {∆k, Jk(si−1)}nk=1);

Ĵ1 ← sort(J1(si), . . . , Jn(si)); // Find minimum cost among all clones
4 if `i−1 − Ĵ1 > ∆1 then
5 `i ← Ĵ1; // New level has been reached
6 i← i+ 1; h← 1; p← pstart; // Reset adaptive parameters
7 {Mk}nk=1 ← Resample({Mh

k , Jk(si)}nk=1);
8 else
9 if h < hmax then

10 h← h+ 1; // Improve time exploration
11 else
12 if p < pmax then
13 h← 1; p← p+ pinc; // Improve space exploration
14 else
15 break;
16 end
17 end
18 end
19 end

// Take a clone in the state with the minimum cost
20 `i = J(s∗i ) 6 ϕ at the last level i;
21 foreach i do
22 {s∗i−1,a

i} ← Pre(s∗i ); // Find the predecessor and its action
23 end
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the dynamic-threshold function ∆k. Also note that ARES is an approximation algorithm.
As a consequence, it might return nonminimal plans. Even in these circumstances,
however, the plans will still lead to an optimal state. This is a V-formation in our flocking
example.

5.3 Experimental Results
To assess the performance of our approach, we developed a simple simulation environment
in Matlab. All experiments were run on an Intel Core i7-5820K CPU with 3.30 GHz and
with 32GB RAM available.

We use the additive approximation algorithm as discussed in [GPR+14]. We would
like to demonstrate that the number of experiments performed is sufficient for high
confidence in our results. This requires us to determine the appropriate number N
of random variables Z1, ...ZN necessary for the Monte-Carlo approximation scheme we
apply to assess efficiency of our approach. If the sample mean µZ = (Z1 + . . .+ZN )/N is
expected to be large, then one can exploit the Bernstein’s inequality [Ber34, Kol] and fix
N to Υ∝ ln(1/δ)/ε2. This results in an additive or absolute-error (ε, δ)-approximation
scheme:

P[µZ − ε ≤ µ̃Z ≤ µZ + ε)] ≥ 1− δ,

where µ̃Z approximates µZ with absolute error ε and probability 1− δ.

In particular, we are interested in Z being a Bernoulli random variable [Wal45b]:

Z =
{

1, if J(c(t),a(t), h(t)) 6 ϕ,
0, otherwise.

Therefore, we can use the Chernoff-Hoeffding [Che52] instantiation of the Bernstein’s in-
equality, and further fix the proportionality constant to Υ = 4 ln(2/δ)/ε2, as in [HLMP04].

We performed numerous experiments with a varying number of birds. Unless stated
otherwise, results refer to 8,000 experiments with 7 birds with the following parameters:
pstart = 10, pinc = 5, pmax = 40, `max = 20, hmax = 5, ϕ= 10−3, and n= 20. The initial
configurations were generated independently uniformly at random subject to the following
constraints:

1. Position constraints: ∀ i∈{1, . . ., 7}. xi(0) ∈ [0, 3]× [0, 3].

2. Velocity constraints: ∀ i∈{1, . . ., 7}. vi(0) ∈ [0.25, 0.75]× [0.25, 0.75].

Table 5.1 gives an overview of the results with respect to the 8,000 experiments we
performed with 7 birds for a maximum of 20 levels. The average fitness across all
experiments is at 0.0282 with a standard deviation of 0.1654. We achieved a success
rate of 94.66% with fitness threshold ϕ = 10−3. The average fitness is higher than the
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Figure 5.6: Left: Example of an arbitrary initial configuration of 7 birds. Right: The
V-formation obtained by applying the plan generated by ARES. In the figures, we show
the wings of the birds, bird orientations, bird speeds (as scaled arrows), upwash regions
in yellow, and downwash regions in dark blue.

Table 5.1: Overview of the results for 8,000 experiments with 7 birds

Successful Total

No. Experiments 7573 8000

Min Max Avg Std Min Max Avg Std

Cost, J 2.88·10−7 9·10−4 4·10−4 3·10−4 2.88·10−7 1.4840 0.0282 0.1607
Time, t 23.14s 310.83s 63.55s 22.81s 23.14s 661.46s 64.85s 28.05s
Plan Length, i 7 20 12.80 2.39 7 20 13.13 2.71
RPH, h 1 5 1.40 0.15 1 5 1.27 0.17

Table 5.2: Average duration for 100 experiments with various number of birds

No. of birds 3 5 7 9

Avg. duration 4.58s 18.92s 64.85s 269.33s

threshold due to comparably high fitness of unsuccessful experiments. When increasing
the bound for the maximal plan length m to 30 we achieved a 98.4% success rate in
1, 000 experiments at the expense of a slightly longer average execution time.

The left plot in Fig. 5.7 depicts the resulting distribution of execution times for 8,000 runs
of our algorithm, where it is clear that, excluding only a few outliers from the histogram,
an arbitrary configuration of birds (Fig. 5.6 (left)) reaches V-formation (Fig. 5.6 (right))
in around 1 minute. The execution time rises with the number of birds as shown in
Table 5.2.

In Fig. 5.7, we illustrate for how many experiments the algorithm had to increase RPH
h (Fig. 5.7 (middle)) and the number of particles used by PSO p (Fig. 5.7 (right)) to
improve time and space exploration, respectively.

According to the additive-error approximation algorithm, for our performed 8,000

53



5. Plan Synthesis for Reachability

Figure 5.7: Left: Distribution of execution times for 8,000 runs. Middle: Statistics of
increasing RPH h. Right: Particles of PSO p for 8,000 experiments

experiments, we achieve a success rate of 95% with absolute error of ε = 0.05 and
confidence ratio 0.99.

Moreover, considering that the average length of a plan is 13, and that each state in
a plan is independent from all other plans, we can roughly consider that our above
estimation generated 80, 000 independent states. For the same confidence ratio of 0.99
we then obtain an approximation error ε= 0.016, and for a confidence ratio of 0.999, we
obtain an approximation error ε= 0.019.

5.4 Chapter Summary
In this chapter, we have presented ARES, a very general adaptive, receding-horizon
synthesis algorithm for MDP-based optimal plans. Additionally, ARES can be readily
converted into a model-predictive controller with an adaptive receding horizon and
statistical guarantees of convergence. We also conducted a very thorough performance
analysis of ARES based on the problem of V-formation in a flock of birds. For flocks
of 7 birds, with high confidence ARES is able to generate an optimal plan leading to a
V-formation in 95% of the 8, 000 random initial configurations we considered, with an
average execution time of only 63 seconds per plan.

The execution time of the ARES algorithm can be improved even further. First, we
currently do not parallelize our implementation of the PSO algorithm. Recent work
[HW12, RKK13, ZT09] has shown how Graphic Processing Units (GPUs) are very
efficient at accelerating PSO computation. Modern GPUs, by providing thousands of
cores, are well-suited for implementing PSO as they enable execution of a very large
number of particles in parallel. Together with the parallelization of the fitness function
calculation, this should significantly speed up our simulations and improve accuracy of
the optimization procedure.

Second, we used a static approach to decide how to increase our prediction horizon and
the number of particles used in PSO. Specifically, we first increase the prediction horizon
from 1 to 5, while keeping the number of particles unchanged at 10; if this fails to find
a solution with fitness Ĵ1 satisfying `i−1− Ĵ1 > ∆1, we then increase the number of
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particles by 5. Based on our results, we speculate that in the initial stages, increasing the
prediction horizon is more beneficial (leading rapidly to the appearance of cost-effective
formations), whereas in the later stages, increasing the number of particles is more helpful.
As future work, we will look at the existing machine-learning approaches to decide on
the value of above parameters at runtime given the current level and state of the MDP,
as well as study the impact of different level decomposition. We will investigate how to
adapt them for various needs of our research to make them work efficiently. Moreover,
in our approach, we calculate the number of clones for resampling based on the current
state. An alternative approach would rely on statistics built up over multiple levels along
with the rank in the sorted list to chose configurations for resampling. Ultimately, we
would like to derive a set of rules to effectively and adaptively compute the necessary
parameters.
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CHAPTER 6
Control Synthesis for Resiliency

Inspired by the emerging problem of CPS security, we introduce the concept of controller-
attacker games. A controller-attacker game is a two-player stochastic game, where the two
players, a controller and an attacker, have antagonistic objectives. A controller-attacker
game is formulated in terms of an MDP, with the controller and the attacker jointly
determining the MDP’s transition probabilities.

We also introduce a class of controller-attacker games we call V-formation games, where
the goal of the controller is to maneuver the plant (a simple model of flocking dynamics)
into a V-formation, and the goal of the attacker is to prevent the controller from doing so.
Controllers in V-formation games utilize a new formulation of model-predictive control
we have developed called Adaptive-Horizon MPC (AMPC), giving them extraordinary
power: we prove that under certain controllability conditions, an AMPC controller can
attain V-formation with probability 1.

We define several classes of attackers, including those that in one move can remove a small
number R of birds from the flock, or introduce random displacement (perturbation) into
the flock dynamics, again by selecting a small number of victim agents. We consider both
naive attackers, whose strategies are purely probabilistic, and AMPC-enabled attackers,
putting them on par strategically with the controller. The architecture of a V-formation
game with an AMPC-enabled attacker is shown in Figure 6.1.

While an AMPC-enabled controller is expected to win every game with probability 1, in
practice, it is resource-constrained: its maximum prediction horizon and the maximum
number of execution steps are fixed in advance. Under these conditions, an attacker has
a much better chance of winning a V-formation game.

AMPC is a key contribution of the work presented in this chapter. Traditional MPC uses
a fixed prediction horizon to determine the optimal control action. The AMPC procedure
chooses the prediction horizon dynamically. Thus, AMPC can adapt to the severity of
the action played by its adversary by choosing its own horizon accordingly. While the
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concept of MPC with an adaptive horizon has been investigated before [Kre16, DE11],
our approach for choosing the prediction horizon based on the progress toward a fitness
goal is entirely novel, and has a more general appeal compared to previous work.

In Chapter 5, we presented a procedure for synthesizing plans (sequences of actions) that
take an MDP to a desired set of states (defining a V-formation). The procedure adaptively
varied the settings of various parameters of an underlying optimization routine. Since
we did not consider any adversary or noise, there was no need for a control algorithm.
Here we consider V-formation in the presence of attacks, and hence we develop a generic
adaptive control procedure, AMPC, and evaluate its resilience to attacks.

Our extensive performance evaluation of V-formation games uses statistical model
checking to estimate the probability that an attacker can thwart the controller. Our
results show that for the bird-removal game with one bird being removed, the controller
almost always wins (restores the flock to a V-formation). When two birds are removed, the
game outcome critically depends on which two birds are removed. For the displacement
game, our results again demonstrate that an intelligent attacker, i.e. one that uses AMPC
in this case, significantly outperforms its naive counterpart that randomly carries out its
attack.

Traditional feedback control is, by design, resilient to noise, and also certain kinds of
attacks; as our results show, however, it may not be resilient against smart attacks.
Adaptive-horizon control helps to guard against a larger class of attacks, but it can
still falter due to limited resources. Our results also demonstrate that statistical model
checking represents a promising approach toward the evaluation of CPS resilience against
a wide range of attacks.

6.1 Controller-Attacker Games

We are interested in games between a controller and an attacker, where the goal of the
controller is to take the system to a desired set of states, and the goal of the attacker
is to keep the system outside these states. We formulate our problem in terms of
Markov Decision Processes for which the controller and the attacker jointly determine
the transition probabilities.

For the bird-flocking problem, n=m= 4B, where B is the number of birds. We have four
state variables and four action variables for each bird. The state variables represent the x-
and the y-components of the position xi and velocity vi of each bird i, whereas the action
variables represent the (x- and y-components of the) acceleration ai and displacement di
of each bird i. The transition relation for the bird-flocking MDP is given by Eq. 2.1.

A randomized strategy over an MDP is a mapping taking every state s to a probability
distribution P (a | s) over the (available) actions. We formally define randomized strategies
as follows.
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Definition 4 LetM= (S,A, T, J, I) be an MDP. A randomized strategy σ overM is
a function of the form σ : S 7→PD(A), where PD(A) is the set of probability distributions
over A. That is, σ takes a state s and returns an action consistent with the probability
distribution σ(s).

A controller-attacker game is a stochastic game [Sha53], where the transition probability
from state s to state s′ is controlled jointly by two players, a controller and an attacker
in our case. To view an MDP as a stochastic game, we assume that the set of actions A
is given as a product C ×D, where the controller chooses the C-component of an action
a and the attacker chooses the D-component of a. We assume that the game is played in
parallel by the controller and the attacker; i.e., they both take the state s(t) ∈ S of the
system at time t, compute their respective actions c(t) ∈ C and d(t) ∈ D, and then use
the composed action (c(t), d(t)) to determine the next state s(t+ 1) ∈ S of the system
(based on the transition function T ). We formally define a controller-attacker game as
follows.

Definition 5 A controller-attacker game is an MDP M= (S,A, T, J, I) with A =
C ×D, where C and D are action sets of the controller and the attacker, respectively.
The transition probability T (s, c× d, s′) is jointly determined by actions c ∈ C and d ∈ D.

The actions of the controller and the attacker are determined by their randomized
strategies. Once we fix a randomized strategy for the controller, and the attacker, the
MDP reduces to a Markov chain on the state space S. Thus, the controller and the
attacker jointly fix the probability of transitioning from a state s to a state s′. We refer
to the underlying Markov chain induced by σ overM asMσ.

We define controller-attacker games on the flocking model by considering the scenario
where the accelerations are under the control of one agent (the controller), and the
displacements (position perturbations) are under the control of the second malicious
agent (the attacker).

Definition 6 A V-formation game is a controller-attacker gameM = (S, A, T , J ,
I), where S = {s | s = {xi,vi}Bi=1} is the set of states for a flock of B birds, A = C ×D
with the controller choosing accelerations a ∈ C and the attacker choosing displacements
d ∈ D, T and J are given in Eq. 5.1 and 5.2, respectively.

In this section, we consider reachability games only. In particular, we are given a set G of
goal states and the goal of the controller is to reach a state in G. Let s0→ s1→ s2→ · · ·
be a sequence of states (a run of the system). The controller wins on this run if ∃i : si ∈ G,
and the attacker wins otherwise.

A classical problem in the study of games pertains to determining the existence of an
optimal winning strategy (e.g. a Nash equilibrium) for a player. We are not concerned
with such problems in this section. Due to the uncountably many states in the state- and
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Controller
c(t) = σC (f1, s(t), J)

Attacker
d(t) = σD (f2, s(t),−J)

Plant
s(t + 1) = f(s(t), c(t), d(t))

c(t)

d(t)

s(t+ 1)

Figure 6.1: Controller-Attacker Game Architecture. The controller and the attacker use
randomized strategies σC and σD to choose actions c(t) and d(t) based on dynamics,
respectively, where s(t) is the state at time t, and f is the dynamics of the plant model.
The controller tries to minimize the cost J , while the attacker tries to maximize it.

action-space, solving such problems for our games of interest is extremely challenging.
Instead, we focus on the problem of determining the likely winner of a game where the
strategy of the two players is fixed. Since we consider randomized strategies, determining
the likely winner is a statistical model checking problem, which allows us to evaluate
the resilience of certain controllers under certain attack models. We are now ready to
formally define the problem we would like to solve.

Definition 7 LetM= (S,A, T, J, I) be an MDP, where A=C ×D, and let σC : S 7→PD(C)
and σD : S 7→PD(D) be randomized strategies over M . Also, let G ⊆ S be the set of goal
states of M. The stochastic game verification problem is to determine the probability
of reaching a state in G in m steps, for a given m, starting from an initial state in
M(σC ,σD).

Fig. 6.1 shows the architecture of a stochastic game between the controller and the
attacker, where at each time step the controller chooses action c(t) as the C-component
using strategy σC , and the attacker chooses action d(t) as the D-component using strategy
σD. The next state of the plant is determined by the composed action (c(t), d(t)) based
on the current state s(t) and the dynamics of the plant model f .

Our main interest is in evaluating the resilience of a control algorithm σC (a controller
can be viewed as a strategy in our framework) to an attack algorithm σD. The key
assumption that the controller and the attacker make is the existence of a cost function
J : S 7→R+ such that

G := {s | J(s) 6 ϕ for some very small ϕ > 0} .

Given such a cost function J , the controller works by minimizing the cost of states
reachable in one or more steps, as is done in MPC. Since the cost function is highly
nonlinear, the controller uses an optimization procedure based on randomization to search
for a minimum. Hence, our controller is a randomized procedure. One possible attack
strategy we consider (for an advanced attacker) is based on the cost function as well: the
attacker tries to maximize the cost of reachable states.
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6.2 The Adaptive-Horizon MPC Algorithm
We now present our new adaptive-horizon MPC algorithm we call AMPC. We will use
this algorithm as the controller strategy in the stochastic games we play on MDPs. We
will also consider attacker strategies that use AMPC. AMPC is an MPC procedure based
on PSO [KE95]. The MPC approach can be used for achieving a V-formation, as was
outlined in [YGST16c, YGST16b]. These earlier works, however, did not use an adaptive
dynamic window, and did not consider the adversarial control problem.

The main algorithm of AMPC performs step-by-step control of a given MDPM by looking
h steps ahead—i.e. it uses a prediction horizon of length h—to determine the next optimal
control action to apply. We use PSO to solve the optimization problem generated by the
MPC procedure.

For V-formation, define the cost of ah as the minimum cost J (Eq. 5.2) obtained within
h steps by applying the sequence ah of h accelerations onM. Formally, we have

Cost(M,ah, h) = min
16τ6h

J(sτah) (6.1)

where sτ
ah is the state after applying the τ -th action of ah to the initial state ofM.1 For

horizon h, PSO searches for the best sequence of 2-dimensional acceleration vectors of
length h, thus having 2hB parameters to be optimized. The number of particles p used
in PSO is proportional to the number of parameters to be optimized, i.e., p = 2βhB,
where β is a preset constant.

The AMPC procedure is given in Algorithm 6.1. A novel feature of AMPC is that, unlike
classical MPC which uses a fixed horizon h, AMPC adaptively chooses an h depending
on whether it is able to reach a cost that is lower than the current cost by our chosen
quanta ∆i, 0 6 i 6 m, for m steps.

AMPC is hence an adaptive MPC procedure that uses level-based horizons. It employs
PSO to identify the potentially best next actions. If the actions ah improve (decrease)
the cost of the state reached within h steps, namely Cost(M,ah, h), by the predefined
∆i, the controller considers these actions to be worthy of leading the flock towards, or
keeping it in, a V-formation.2

In this case, the controller applies the first action to each bird and transitions to the
next state of the MDP. The threshold ∆i determines the next level `i =Cost(M, âh, h),
where âh is the optimal action sequence. The prediction horizon h is increased iteratively
if the cost has not been decreased enough. Upon reaching a new level, the horizon is
reset to one (see Algorithm 6.1).

Having a horizon h> 1 means it will take multiple transitions in the MDP to reach a
solution with sufficiently improved cost. However, when finding such a solution with

1The initial state of M is being used to store the “current” state of the MDP as we execute our
algorithm.

2We focus our attention on bird flocking, since the details generalize naturally to other MDPs that
come with a cost function.
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Algorithm 6.1: AMPC: Adaptive Model-Predictive Control
Input :M, ϕ, hmax ,m,B,Fitness
Output : {ai}16i6m // Optimal control sequence

1 Initialize `0 ← J(s0); Ĵ ← inf; p← 2βBh; i← 1; h← 1; ∆0 ← (`0 − ϕ)/m;
2 while (`i−1 > ϕ) ∧ (i < m) do

// Find and apply the first action from the sequence of length h
3 [ah, Ĵ ]←particleswarm(Fitness,M, p, h);
4 if `i−1 − Ĵ > ∆i ∨ h = hmax then

// If a new level or the maximum horizon is reached
5 ai ← ah1 ;M←Mai ; // Apply the action and move
6 `i ← J(s(M)); // Update `i with fitness of the current state
7 ∆i ← `i/(m− i); // Update the threshold for the next level
8 i← i+ 1; h← 1; p← 2βBh; // Update parameters
9 else

10 h← h+ 1; p← 2βBh; // Increase the horizon
11 end
12 end

h> 1, we only apply the first action to transition the MDP to the next state. This is
explained by the need to allow the other player (the environment or an adversary) to
apply their action before we obtain the actual next state. If no new level is reached
within hmax horizons, the first action of the best ah using horizon hmax is applied.

The dynamic threshold ∆i is defined as in [LEH+17]. Its initial value ∆0 is obtained
by dividing the cost range to be covered into m equal parts, that is, ∆0 = (`0− `m) /m,
where `0 = J(s0) and `m =ϕ. Subsequently, ∆i is determined by the previously reached
level `i−1, as ∆i = `i−1/(m− i+ 1). This way AMPC advances only if `i =Cost(M, âh, h)
is at least ∆i apart from `i−1.

This approach allows us to force PSO to escape from a local minimum, even if this implies
passing over a bump, by gradually increasing the exploration horizon h. We assume that
the MDP is controllable. A discrete-time system S is said to be controllable if for any
given states s and t, there exist a finite sequence of control inputs that takes S from s
to t[OY02]. We also assume that the set G of goal states is non-empty, which means
that from any state, it is possible to reach a state whose cost decreased by at least ∆i.
Algorithm 6.1 describes our approach in more detail.

Theorem 1 (AMPC Convergence) Given an MDPM= (S,A, T, J) with positive and
continuous cost function J , and a nonempty set of target states G⊂S with G= {s | J(s)6ϕ}.
If the transition relation T is controllable with actions in A, then there exists a finite
maximum horizon hmax and a finite number of execution steps m, such that AMPC is
able to find a sequence of actions a1, . . . , am that brings a state in S to a state in G with
probability one.
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Proof 2 In each (macro-) step of horizon length h, from level `i−1 to level `i, AMPC
decreases the distance to ϕ by ∆i>∆, where ∆> 0 is fixed by the number of steps m
chosen in advance. Hence, AMPC converges to a state in G in a finite number of steps,
for a properly chosen m. AMPC is able to decrease the cost in a macro step by ∆i by the
controllability assumption and the fairness assumption about the PSO algorithm. Since
AMPC is a randomized algorithm, the result is probabilistic. Let us formally elaborate on
the above statement.

According to the PSO procedure [KE95], the update of each particle involves sampling
two random variables independently from a uniform distribution on (0, 1). Consequently,
having as input a vector of accelerations a, the particles in PSO differ from the one
that gives minimum cost among all birds up to a magnitude of standard deviation of a
random value following a distribution that we will call α ∼ PSO(s): ∀p = 1, . . . , pmax
ap = a∗1 + α. Here ap is a solution proposed by the particle p of PSO, a∗ is the best
proposal in the swarm, and 1 is a unity vector of the length pmax.

Due to the Central Limit Theorem (CLT) [Bil08], the distribution PSO(s) can be quite well
approximated by a Gaussian distributed curve, even though the mean values of α might
vary from step to step, as long as their variances are finite. After applying solutions output
by PSO, we can obtain corresponding values of the cost functions: Ĵ(sp) = Ĵ(sp∗)1+J(α),
where Ĵ(sp∗) is the minimum cost among all particles and J(α) is a value added by the
stochasticity of PSO.

The added cost is positive for all particles apart from the one proposing the minimal
solution: J(α∗) = 0 ⇔ α∗ = 0. The birds can build their Lyapunov function. By
construction, the Lyapunov function is monotonically decreasing. Thus, the birds reach
the new level if and only if they decrease the added cost to zero.

Note that the theorem is an existence theorem of hmax and m whose values are chosen
empirically in practice.

The adaptive MPC procedure, AMPC, is a key contribution of our work. Recall that
traditional MPC uses a fixed finite horizon to determine the best control action. In
contrast, AMPC dynamically chooses the horizon depending on the severity of the action
played by the opponent (or environment). AMPC is inspired by the optimial plan synthesis
procedure presented in Chapter 5, which dynamically configures the amount of the effort
it uses to search for a better solution at each step. In planning algorithm the monolithic
synthesis procedure was adaptive (and involved dynamically changing several parameters),
whereas here the control procedure is adaptive and the underlying optimization is non-
adaptive off-the-shelf procedure, and hence the overall procedure here is simpler.

Note that AMPC is a general procedure that performs adaptive MPC using PSO for
dynamical systems that are controllable, come with a cost function, and have at least
one optimal solution. In an adversarial situation two players have opposing objectives.
The question arises what one player assumes about the other when computing its own
action, which we discuss next.

63



6. Control Synthesis for Resiliency

6.3 Stochastic Games for V-Formation
We describe the specialization of the stochastic-game verification problem to V-formation.
In particular, we present the AMPC-based control strategy for reaching a V-formation, and
the various attacker strategies against which we evaluate the resilience of our controller.

6.3.1 Controller’s Adaptive Strategies

Given current state (~x(t), ~v(t)), the controller’s strategy σC returns a probability distri-
bution on the space of all possible accelerations (for all birds). As mentioned above, this
probability distribution is specified implicitly via a randomized algorithm that returns
an actual acceleration (again for all birds). This randomized algorithm is the AMPC
algorithm, which inherits its randomization from the randomized PSO procedure it
deploys.

When the controller computes an acceleration, it assumes that the attacker does not
introduce any disturbances; i.e., the controller uses the following model:

vi(t+ 1) = vi(t) + ai(t)
xi(t+ 1) = xi(t) + vi(t) (6.2)

where a(t) is the only control variable. Note that the controller chooses its next action
a(t) based on the current configuration (x(t),v(t)) of the flock using MPC. The current
configuration may have been influenced by the disturbance ~d(t− 1) introduced by the
attacker in the previous time step. Hence, the current state need not to be the state
predicted by the controller when performing MPC in step t− 1. Moreover, depending on
the severity of the attacker action ~d(t− 1), the AMPC procedure dynamically adapts its
behavior, i.e. the choice of horizon h, in order to enable the controller to pick the best
control action ~a(t) in response.

6.3.2 Attacker’s Strategies

We are interested in evaluating the resilience of our V-formation controller when it is
threatened by an attacker that can remove a certain number of birds from the flock, or
manipulate a certain number of birds by taking control of their actuators (modeled by
the displacement term in Eq. 5.1). We assume that the attack lasts for a limited amount
of time, after which the controller attempts to bring the system back into the good set of
states. When there is no attack, the system behavior is the one given by Eq. 6.2.

Bird Removal Game. In a BRG, the attacker selects a subset of R birds, where
R�B, and removes them from the flock. The removal of bird i from the flock can be
simulated in our framework by setting the displacement di for bird i to ∞. We assume
that the flock is in a V-formation at time t= 0. Thus, the goal of the controller is to
bring the flock back into a V-formation consisting of B−R birds. Apart from seeing
if the controller can bring the flock back to a V-formation, we also analyze the time it
takes the controller to do so.
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Definition 8 In a Bird Removal Game (BRG), the attacker strategy σD is defined as
follows. Starting from a V-formation of B birds, i.e., J(s0) 6 ϕ, the attacker chooses
a subset of R birds, R� B, by uniform sampling without replacement. Then, in every
round, it assigns each bird i in the subset a displacement di =∞, while for all other birds
j, dj = 0.

Random Displacement Game. In an RDG, the attacker chooses the displacement
vector for a subset of R birds uniformly from the space [0,M ]× [0, 2π] with R� B. This
means that the magnitude of the displacement vector is picked from the interval [0,M ],
and the direction of the displacement vector is picked from the interval [0, 2π]. We vary
M in our experiments. The subset of R birds that are picked in different steps are not
necessarily the same, as the attacker makes this choice uniformly at random at runtime
as well.

The game starts from an initial V-formation. The attacker is allowed a fixed number
of moves, say 20, after which the displacement vector is identically 0 for all birds. The
controller, which has been running in parallel with the attacker, is then tasked with
moving the flock back to a V-formation, if necessary.

Definition 9 In a Random Displacement Game (RDG), the attacker strategy σD is
defined as follows. Starting from a V-formation of B birds, i.e., J(s0) 6 ϕ, in every
round, it chooses a subset of R birds, R� B, by uniform sampling without replacement.
It then assigns each bird i in the subset a displacement di chosen uniformly at random
from [0,M ]× [0, 2π], while for all other birds j, dj = 0. After T rounds, all displacements
are set to 0.

AMPC Game. An AMPC game is similar to an RDG except that the attacker does
not use a uniform distribution to determine the displacement vector. The attacker is
advanced and strategically calculates the displacement using the AMPC procedure. See
Figure 6.1. In detail, the attacker applies AMPC, but assumes the controller applies zero
acceleration. Thus, the attacker uses the following model of the flock dynamics:

vi(t+ 1) = vi(t)
xi(t+ 1) = xi(t) + vi(t) + di(t) (6.3)

Note that the attacker is still allowed to have di(t) be non-zero for only a small number
of birds. However, it gets to choose these birds in each step. It uses the AMPC procedure
to simultaneously pick the subset of R birds and their displacements. The objective of
the attacker’s AMPC is to maximize the cost.

Definition 10 In an AMPC game, the attacker strategy σD is defined as follows. Starting
from a V-formation of B birds, i.e., J(s0) 6 ϕ, in every round, it uses AMPC to choose
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a subset of R birds, R � B, and their displacements di for bird i in the subset from
[0,M ]× [0, 2π]; for all other birds j, dj = 0. After T rounds, all displacements are set to
0.

Theorem 2 (AMPC resilience in a C-A game) Given a controller-attacker game, there
exists a finite maximum horizon hmax and a finite maximum number of game-execution
steps m such that AMPC controller will win the controller-attacker game in m steps with
probability 1.

Proof 3 Since the flock MDP (defined by Eq. 5.1) is controllable, the PSO algorithm we
use is fair, and the attack has a bounded duration, the proof of the theorem follows from
Theorem 1.

Remark 1 While Theorem 2 states that the controller is expected to win with probability 1,
we expect winning probability to be possibly lower than one in many cases because: (1) the
maximum horizon hmax is fixed in advance, and so is (2) the maximum number of
execution steps m; (3) the underlying PSO algorithm is also run with bounded number of
particles and time. Theorem 2 is an existence theorem of hmax and m, while in practice
one chooses fixed values of hmax and m that could be lower than the required values.

6.4 Statistical MC Evaluation of V-Formation Games
As discussed in Section 5.1.4, the stochastic-game verification problem we address in
the context of the V-formation-AMPC algorithm is formulated as follows. Given a flock
MDPM (we consider the case of B= 7 birds), acceleration actions a of the controller,
displacement actions d of the attacker, the randomized strategy σC : S 7→PD(C) of
the controller (the AMPC algorithm), and a randomized strategy σD : S 7→PD(D) for
the attacker, determine the probability of reaching a state s where the cost function
J(s)6ϕ (V-formation in a 7-bird flock), starting from an initial state (in this case this is
a V-formation), in the underlying Markov chain induced by strategies σC , σD onM.

Since the exact solution to this reachability problem is intractable due to the infinite/-
continuous space of states and actions, we solve it approximately with classical statistical
model-checking (SMC). The particular SMC procedure we use is from [GPR+14] and
based on an additive or absolute-error (ε, δ)-Monte-Carlo-approximation scheme. This
technique requires running N i.i.d. game executions, each for a given maximum time
horizon, determining if these executions reach a V-formation, and returning the average
number of times this occurs.

Each of the games described in Section 6.3 is executed 2,000 times. For a confidence ratio
δ= 0.01, we thus obtain an additive error of ε= 0.1. We use the following parameters in
the game executions: number of birds B= 7, threshold on the cost ϕ= 10−3, maximum
horizon hmax = 5, number of particles in PSO p= 20hB. In BRG, the controller is allowed
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Figure 6.2: Left: numbering of the birds. Right: configuration after removing Bird 2
and 5. The red-filled circle and two protruding line segments represent a bird’s body
and wings. Arrows represent bird velocities. Dotted lines illustrate clear-view cones. A
brighter/darker background color indicates a higher upwash/downwash.

to run for a maximum of 30 steps. In RDG and AMPC game, the attacker and the
controller run in parallel for 20 steps, after which the displacement becomes 0, and the
controller has a maximum of 20 more steps to restore the flock to a V-formation.

To perform SMC evaluation of our AMPC approach we designed the above experiments in
C and ran them on the Intel Core i7-5820K CPU with 3.30 GHz and with 32GB RAM
available.

Table 6.1: Results of 2,000 game executions for removing 1 bird with hmax = 5, m= 40

Ctrl. success rate, % Avg. convergence duration Avg. horizon

Bird 4 99.9 12.75 3.64
Bird 3 99.8 18.98 4.25
Bird 2 100 10.82 3.45

Table 6.2: Results of 2,000 game executions for removing 2 birds with hmax = 5, m= 30

Ctrl. success rate, % Avg. convergence duration Avg. horizon

Birds 2 and 3 0.8 25.18 4.30
Birds 2 and 4 83.1 11.11 2.94
Birds 2 and 5 80.3 9.59 2.83
Birds 2 and 6 98.6 7.02 2.27
Birds 3 and 4 2.0 22.86 4.30
Birds 3 and 5 92.8 11.8 3.43
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Table 6.3: Results of 2,000 game executions for random displacement and AMPC attacks
with hmax = 5 and m= 40 (attacker runs for 20 steps)

Range of noise Ctrl. success rate, % Avg. convergence duration Avg. horizon

Random displacement game

[0, 0.50]× [0, 2π] 99.9 3.33 1.07
[0, 0.75]× [0, 2π] 97.9 3.61 1.11
[0, 1.00]× [0, 2π] 92.3 4.14 1.18

AMPC game

[0, 0.50]× [0, 2π] 97.5 4.29 1.09
[0, 0.75]× [0, 2π] 63.4 5.17 1.23
[0, 1.00]× [0, 2π] 20.0 7.30 1.47

6.5 Discussion of the Results
To demonstrate the resilience of our adaptive controller, for each game introduced in
Section 6.3, we performed a number of experiments to estimate the probability of the
controller winning. Moreover, for the runs where the controller wins, the average number
of steps required by the controller to bring the flock to a V-formation is reported as
average convergence duration, and the average length of the horizon used by AMPC is
reported as average horizon.

The numbering of the birds in Tables 6.1 and 6.2 is given in Figure 6.2. Bird-removal
scenarios that are symmetric with the ones in the tables are omitted. The results
presented in Table 6.1 are for the BRG game with R= 1. In this case, the controller is
almost always able to bring the flock back to a V-formation, as is evident from Table 6.1.
Note that removing Bird 1 (or 7) is a trivial case that results in a V-formation.

In the case when R= 2, shown in Table 6.2, the success rate of the controller depends on
which two birds are removed. Naturally, there are cases where dropping two birds does
not break the V-formation; for example, after dropping Birds 1 and 2, the remaining
birds continue to be in a V-formation. Such trivial cases are not shown in Table 6.2.
Note that the scenario of removing Bird 1 (or 7) and one other bird can be viewed as
removing one bird in flock of 6 birds, thus not considered in this table. Among the other
nontrivial cases, the success rate of controller drops slightly in four cases, and drops
drastically in remaining two cases. This suggests that attacker of a CPS system can incur
more damage by being prudent in the choice of the attack.

Impressively, whenever the controller wins, the controller needs about the same number of
steps to get back to V-formation (as in the one-bird removal case). On average, removal
of two birds results in a configuration that has worse cost compared to an BRG with
R= 1. Hence, the adaptive controller is able to make bigger improvements (in each step)
when challenged by worse configurations. Furthermore, among the four cases where the
controller win rate is high, experimental results demonstrate that removing two birds
positioned asymmetrically with respect to the leader poses a stronger, however, still
manageable threat to the formation. For instance, the scenarios of removing birds 2
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and 6 or 3 and 5 give the controller a significantly higher chance to recover from the
attack, 98.6% and 92.8%, respectively.

Table 6.3 explores the effect of making the attacker smarter. Compared to an attacker
that makes random changes in displacement, an attacker that uses AMPC to pick its
action is able to win more often. This again shows that an attacker of a CPS system
can improve its chances by cleverly choosing the attack. For example, the probability of
success for the controller to recover drops from 92.3% to 20.0% when the attacker uses
AMPC to pick displacements with magnitude in [0, 1] and direction in [0, 2π]. The entries
in the other two columns in Table 6.3 reveal two even more interesting facts.

First, in the cases when the controller wins, we clearly see that the controller uses a longer
look-ahead when facing a more challenging attack. This follows from the observation
that the average horizon value increases with the strength of attack. This gives evidence
for the fact that the adaptive component of our AMPC plays a pivotal role in providing
resilience against sophisticated attacks. Second, the average horizon still being in the
range 1-1.5, means that the adaptation in our AMPC procedure also helps it perform better
than a fixed-horizon MPC procedure, where usually the horizon is fixed to h> 2. When
a low value of h (say h= 1) suffices, the AMPC procedure avoids unnecessary calculation
that using a fixed h might incur.

In the cases where success rate was low (Row 1 and Row 5 in Table 6.2, and Row 3 of the
AMPC game in Table 6.3), we conducted additional 500 runs for each case and observed
improved success rates (2.4%, 9% and 30.8% respectively) when we increased hmax to 10
and m to 40. This shows that success rates of AMPC improves when given more resources,
as predicted by Theorem 1.

6.6 Chapter Summary

We introduced AMPC, a new model-predictive controller that unlike MPC, comes with
provable convergence guarantees. The key innovation of AMPC is that it dynamically
adapts its receding horizon (RH) to get out of local minima. In each prediction step, AMPC
calls PSO with an optimal RH and corresponding number of particles. We used AMPC as
a bird-flocking controller whose goal is to achieve V-formation despite various forms of
attacks, including bird-removal, bird-position-perturbation, and advanced AMPC-based
attacks. We quantified the resilience of AMPC to such attacks using statistical model
checking. Our results show that AMPC is able to adapt to the severity of an attack
by dynamically changing its horizon size and the number of particles used by PSO to
completely recover from the attack, given a sufficiently long horizon and execution time
(ET). The intelligence of an attacker, however, makes a difference in the outcome of a
game if RH and ET are bounded before the game begins.

Future work includes the consideration of additional forms of attacks, including: Energy
attack, when the flock is not traveling in a V-formation for a certain amount of time;
Collisions, when two birds are dangerously close to each other due to sensor spoofing
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or adversarial birds; and Heading change, when the flock is diverted from its original
destination (mission target) by a certain degree.
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CHAPTER 7
Distributed Control

This chapter introduces DAMPC, a distributed version of AMPC that extends it along several
dimensions. First, at every time step, DAMPC runs a distributed consensus algorithm to
determine the optimal action (acceleration) for every agent in the flock. In particular,
each agent i starts by computing the optimal actions for its local subflock. The subflocks
then communicate in a sequence of consensus rounds to determine the optimal actions
for the entire flock. Secondly, DAMPC features adaptive neighborhood resizing (black
line in Fig. 7.1) in an effort to further improve the algorithm’s efficiency. In a similar
way as for the prediction horizon in AMPC, neighborhood resizing utilizes the implicit
Lyapunov function to guarantee eventual convergence to a minimum neighborhood size.
DAMPC thus treats the neighborhood size as another controllable variable that can be
dynamically adjusted for efficiency purposes. This leads to reduced communication
and computation compared to the centralized solution, without sacrificing statistical
guarantees of convergence such as those offered by its centralized counterpart AMPC.

The proof of statistical global convergence is intricate. For example, consider the scenario
shown in Fig. 7.1. DAMPC is decreasing the neighborhood size k for all agents, as the
system-wide cost function J follows a decreasing trajectory. Suddenly and without
warning, the flock begins to split into two, undoubtedly owing to an unsuitably low value
of k, leading to an abrupt upward turn in J . DAMPC reacts accordingly and promptly,
increasing its prediction horizon first and then k, until system stability is restored. The
ability for DAMPC to do this is guaranteed, for in the worst case k will be increased to
B, the total number of birds in the flock. It can then again attempted to monotonically
decrease k, but this time starting from a lower value of J , until V-formation is reached.

A smoother convergence scenario is shown in Fig. 7.3. In this case, the efficiency gains
of adaptive neighborhood resizing are more evident, as the cost function J follows an
almost purely monotonically decreasing trajectory. A formal proof of global convergence
of DAMPC with high probability is given in the body of the section, and represents one of
its main results.
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Figure 7.1: Left: Blue bars are the values of the cost function in every time step. Red
dashed line is the cost-based Lyapunov function used for horizon and neighborhood
adaptation. Black solid line is neighborhood resizing for the next step given the current
cost. Right: Step-by-step evolution of the flock of seven birds bringing two separate
formations together. Each color-slice is a configuration of the birds at a particular time
step.

Apart from the novel adaptive-horizon adaptive-neighborhood distributed algorithm to
synthesize a controller, and its verification using statistical model checking, we believe
the work here is significant in a deeper way. The problem of synthesizing a sequence of
control actions to drive a system to a desired state can be also viewed as a falsification
problem, where one tries to find values for (adversarial) inputs that steer the system to a
bad state.

These problems can be cast as constraint satisfaction problems, or as optimization
problems. As in case of V-formation, one has to deal with non-convexity, and popular
techniques, such as convex optimization, will not work. Our approach can be seen as
a tool for solving such highly nonlinear optimization problems that encode systems
with notions of time steps and spatially distributed agents. Our work demonstrates
that a solution can be found efficiently by adaptively varying the time horizon and the
spatial neighborhood. A main benefit of the adaptive scheme, apart from efficiency, is
that it gives a path towards completeness. By allowing adaptation to consider longer
time horizons, and larger neighborhoods (possibly the entire flock), one can provide
convergence guarantees that would be otherwise impossible (say, in a fixed-horizon MPC).

7.1 The Stochastic Reachability Problem
Given the stochasticity introduced by PSO, the V-formation problem can be formulated
in terms of a reachability problem for a Markov Chain, induced by the composition of an
MDP and a controller.

The MDP M modeling a flock of B birds is defined as follows. The set of states S is
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S = R4B, as each bird has a 2D position and a 2D velocity vector, and the flock contains
B birds. The set of actions A is A = R2B, as each bird takes a 2D acceleration action
and there are B birds. The cost function J is defined by Eq. 5.2. The transition function
T is defined by Eq. 2.1. As the acceleration vector ai(t) for bird i at time t is a random
variable, the state vector (xi(t+ 1), vi(t+ 1)) is also a random variable. The initial state
distribution I is a uniform distribution from a region of state space where all birds have
positions and velocities in a range defined by fixed lower and upper bounds.

Before we can define traces, or executions, ofM, we need to fix a controller, or strategy,
that determines which action from A to use at any given state of the system. We focus
on randomized strategies. A randomized strategy σ over M is a function of the form
σ : S 7→PD(A), where PD(A) is the set of probability distributions over A. That is, σ
takes a state s and returns an action consistent with the probability distribution σ(s).
Once we fix a strategy for an MDP, we obtain a Markov chain. We refer to the underlying
Markov chain induced by σ overM asMσ. We use the terms strategy and controller
interchangeably.

In the bird-flocking problem, a controller would be a function that determines the
accelerations for all the birds given their current positions and velocities. Once we fix
a controller, we can iteratively use it to (probabilistically) select a sequence of flock
accelerations. The goal is to generate a sequence of actions that takes an MDP from an
initial state s to a state s∗ with J(s∗)6ϕ.

Definition 11 Let M= (S,A, T, J, I) be an MDP, and let G ⊆ S be the set of goal
states G= {s|J(s)6ϕ} of M. Our stochastic reachability problem is to design a
controller σ : S 7→PD(A) for M such that for a given δ probability of the underlying
Markov chain Mσ to reach a state in G in m steps, for a given m, starting from an
initial state, is at least 1− δ.

We approach the stochastic reachability problem by designing a controller and quantifying
its probability of success in reaching the goal states. In Chapter 5, a stochastic reachability
problem was solved by appropriately designing centralized controllers σ. In this section,
we design a distributed procedure with an adaptive horizon and adaptive neighborhood
resizing and evaluate its performance.

7.2 Adaptive-Neighborhood Distributed Control

In contrast to planning and control procedures presented in Chapter 5 and Chapter 6,
respectively, we consider a distributed setting with the following assumptions about the
system model.

1. Each bird is equipped with the means for communication. The communication
radius of each bird i changes its size adaptively. The measure of the radius is the
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number of birds covered and we refer to it as the bird’s local neighborhood Ni,
including the bird itself.

2. All birds use the same algorithm to satisfy their local reachability goals, i.e. to
bring the local cost J(sNi), i∈{1, . . . , B}, below the given threshold ϕ.

3. The birds move in continuous space and change accelerations synchronously at
discrete time points.

4. After executing its local algorithms, each bird broadcasts the obtained solutions to
its neighbors. This way every bird receives solution proposals, which differ due to
the fact that each bird has its own local neighborhood. To find consensus, each
bird takes as its best action the one with the minimal cost among the received
proposals. The solutions for the birds in the considered neighborhood are then
fixed. The consensus rounds repeat until all birds in the flock have fixed solutions.

5. Every time step the value of the cost function J(s) is obtained globally for all birds
in the flock and checked for improvement. The neighborhood for each bird is then
resized based on this global check.

6. The upwash, modeled in Figure 5.4, maintains connectivity of the flock along the
computations, while our algorithm manages collision avoidance.

The central result presented in this section is a distributed adaptive-neighborhood and
adaptive-horizon model-predictive control algorithm we call DAMPC. At each time step,
each bird runs AMPC to determine the best acceleration for itself and its neighbors (while
ignoring the birds outside its neighborhood). The birds then exchange the computed
accelerations with their neighbors, and the whole flock arrives at a consensus that assigns
each bird to a unique (fixed) acceleration value. Before reaching consensus, it may be
the case that some of i’s neighbors already have fixed solutions (accelerations) – these
accelerations are not updated when i runs AMPC. A key idea of our algorithm is to
adaptively resize the extent of a bird’s neighborhood.

7.3 The Distributed AMPC Algorithm
DAMPC (see Alg. 7.1) takes as input an MDPM, a threshold ϕ defining the goal states G,
the maximum horizon length hmax, the maximum number of time steps m, the number
of birds B, and a scaling factor β. It outputs a state s0 in I and a sequence of actions
a1 :m takingM from s0 to a state in G.

The initialization step (Line 1) chooses an initial state s0 from I, fixes an initial level
`0 as the cost of s0, sets the initial time t and number of birds to process k. The outer
while-loop (Lines 2-22) is active as long asM has not reached G and time has not expired.
In each time step, DAMPC first sets the sequences of accelerations a1 : !

i (t) for all i to ?
(not yet fixed), and then iterates lines 4-15 until all birds fix their accelerations through
global consensus (Line 10). This happens as follows. First, all birds determine their
neighborhood (subflock) Ni and the cost decrement ∆i that will bring them to the next
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Algorithm 7.1: DAMPC
Input :M= (S,A, T, J, I) , ϕ, hmax ,m,B, β
Output : s0, a1 : m = [a(t)]16t6 m

1 s0 ← sample(I); s← s0; `0 ← J(s); t← 1; k ← B; H ← hmax;
2 while (`t−1 > ϕ) ∧ (t < m) do
3 ∀i : a1 : !

i (t)← ?; // No bird has a fixed solution yet
4 while (R← {j |aj(t) = ?}) 6= ∅ do
5 for i ∈ R do in parallel
6 Ni ← Neighbors(i, k); // k neighbors of i
7 ∆i ← J

(
s!

Ni

)
/(m−t);

8
(
s1 : !

Ni
,a1 : !

Ni

)
← LocalAMPC

(
M, s1 : !

Ni
,a1 : !

Ni
,∆i, H, β

)
;

9 end
10 i∗ ← arg minj∈R J

(
s!

Nj

)
; // Best solution in Ni∗

// Fix i∗’s neighbors solutions
11 for i ∈ Neighbors(i∗, k) do
12 a1 : !

i (t)← a1 : !
Ni∗ [i]; // The solution for bird i

13 end
14 end

// First action and next state
15 a(t)← a1(t); s1 ←

⋃
i s1

Ni
; s! ←

⋃
i s!

Ni
; s← s1;

16 if `t−1 − J
(
s!) > ∆ then

17 `t ← J
(
s!); t← t+1; // Proceed to the next level

18 end
19 k ← NeighSize

(
J
(
s!) , k); // Adjust neighborhood size

20 end

level (Lines 6-7). Second, they call LocalAMPC, which takes sequences of states and
actions fixed so far and extends them such that (line 8) the returned sequence of actions
a1 : !
Ni

and corresponding sequence of states s1 : !
Ni

decrease the cost of the subflock by ∆i.
Here notation 1 : ! means the whole sequence including the last element ! (some number,
the farthest point in the future where the state of the subflock is fixed), which can differ
from one neighborhood to another depending on the length of used horizon. Note that
an action sequence passed to LocalAMPC as input a1 : !

Ni
contains ? and the goal is to fill

in the gaps in solution sequence by means of this iterative process. In Line 10 we use the
value of the cost function in the last resulting state J

(
s!
Nj

)
as a criterion for choosing the

best action sequence proposed among neighbors j ∈ R. Then the acceleration sequences
of all birds in this subflock are fixed (Lines 12-14).

After all accelerations sequences are fixed, that is all ? are eliminated, the first accelerations
in this sequence are selected for the output (Line 17). The next state s1 is set to the
union of s1

Ni
for all neighbors i = 1 :B, the state of the flock after executing a(t) is set to

the union of s!
Ni
. If we found a path that eventually decreases the cost by ∆, we reached

the next level, and advance time (Lines 18-20) In that case, we optionally decrease the
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Figure 7.2: (a) First round of synchronization for neighborhood size four where Bird 2
runs Local AMPC taking as an input for PSO accelerations of Birds 1, 3,and 4 with
? value. (b) Second synchronization round where Bird 5 takes as an input for PSO
fixed accelerations of Birds 3 and 4, and value ? for acceleration of Bird 6. (c) Third
synchronization round during the same time step where Bird 7 is the only one whose
acceleration has not been fixed yet and it simply has to compute the solution for its
neighborhood given fixed accelerations of Birds 4, 5, and 6.

neighborhood, and increase it otherwise (Line 21).

The algorithm is distributed and with a dynamically changing topology. Lines 4, 10,
and 18 require synchronization which can be achieved by broadcasting corresponding
information to a central hub of the network. This can be a different bird or a different
base station at each time step.

Fig. 7.2 illustrates DAMPC for synchronization rounds within two consecutive time steps
including neighborhood resizing. Bigger yellow circles represent birds that are running
LocalAMPC. Smaller blue circles represent birds whose acceleration sequences are
not completely fixed yet. Black squares mark birds with already fixed accelerations.
Connecting lines are neighborhood relationship.

Working with a real CPS flock requires careful consideration of energy consumption.
Our algorithm accounts for this by using the smallest neighborhood necessary during
next control input computations. Regarding deployment, we see the following approach.
Alg. 7.2 can be implemented as a local controller on each drone and communication
will require broadcasting positions and output of the algorithm to other drones in the
neighborhood through a shared memory. In this case, according to Alg. 7.1, a central
agent will be needed to periodically compute the global cost and resize the neighborhood.
Before deployment, we plan to use OpenUAV simulator [SLV+18] to test DAMPC on drone
formation control scenarios described in [LKS+18].

7.3.1 The Local AMPC Algorithm

LocalAMPC is a modified version of the AMPC algorithm [TSE+17], as shown in Alg. 7.2.
Its input is an MDPM, the current state s1 : !

Ni
of a subflock Ni, a vector of acceleration

sequences a1 : !
Ni

, one sequence for each bird in the subflock, a cost decrement ∆i to be

76



7.3. The Distributed AMPC Algorithm

achieved, a maximum horizon H and a scaling factor β. In a1 : !
Ni

some accelerations may
not be fixed yet, that is, they have value ?.

Its output is a vector of acceleration sequences a1 : !
Ni

, one for each bird, that decreased
the cost of the flock at most, the state s1 : !

Ni
of the subflock after executing all actions.

Algorithm 7.2: LocalAMPC
Input :M= (S,A, T, J, I), s1 : !

Ni
, a1 : !

Ni
, ∆i, H, β

Output : s1 : !
Ni

, a1 : !
Ni

1 p← 2 · β ·B; // Initial swarm size
2 hi ← 1; // Initial horizon ∀j ∈ Ni : a1

j = ?
3 repeat

// Run PSO with local information s1 : !
Ni

and a1 : !
Ni

4
(
ts1 : !

Ni
, ta1 : !

Ni

)
← PSO(M, s1 : !

Ni
,a1 : !

Ni
, p, hi);

5 hi ← hi + 1; p← 2 · β · hi ·B; // increase horizon, swarm size
6 until

(
J
(
ts!

Ni

)
− `t−1 < ∆i

)
∧ (hi 6 H)

7 s1 : !
Ni
← ts1 : !

Ni
; a1 : !

Ni
← ta1 : !

Ni
; // Return temporary sequences

LocalAMPC first initializes (Line 1) the number of particles p to be used by PSO,
proportionally to the input horizon hi, to the number of birds B, and the scaling factor β.
It then tries to decrement the cost of the subflock by at least ∆i, as long as the maximum
horizon H is not reached (Lines 3-7).

For this purpose it calls PSO (Line 5) with an increasingly longer horizon, and an
increasingly larger number of particles. The idea is that the flock might have to first
overcome a cost bump, before it gets to a state where the cost decreases by at least
∆i. PSO extends the input sequences of fixed actions to the desired horizon with new
actions that are most successful in decreasing the cost of the flock, and it computes from
scratch the sequence of actions, for the ? entries. The result is returned in a1 : !

Ni
. PSO also

returns the states s1 : !
Ni

of the flock after applying the whole sequence of actions. Using
this information, it computes the actual cost achieved.

Lemma 1 (Local convergence) Given M = (S,A, T, J, I), an MDP with cost func-
tion cost, and a nonempty set of target states G ⊂ S with G = {s | J(s) 6 ϕ}. If the
transition relation T is controllable with actions in A for every (local) subset of agents,
then there exists a finite (maximum) horizon hmax such that LocalAMPC is able to find
the best actions a1 : !

Ni
that decreases the cost of a neighborhood of agents in the states s1 : !

Ni

by at least a given ∆.

Proof 4 In the input to LocalAMPC, the accelerations of some birds in Ni may be
fixed (for some horizon). As a consequence, the MDPM may not be fully controllable
within this horizon. Beyond this horizon, however, PSO is allowed to freely choose the
accelerations, that is, the MDP M is fully controllable again. The result now follows
from convergence of AMPC (Theorem 1 from [TSE+17]).
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Figure 7.3: Left: Blue bars are the values of the cost function in every time step. Red
dashed line in the value of the Lyapunov function serving as a threshold for the algorithm.
Black solid line is resizing of the neighborhood for the next step given the current cost.
Right: Step-by-step evolution of the flock from an arbitrary initial configuration in the
left lower corner towards a V-formation in the right upper corner of the plot.

7.3.2 Dynamic Neighborhood Resizing

The key feature of DAMPC is that it adaptively resizes neighborhoods. This is based on
the following observation: as the agents are gradually converging towards a global optimal
state, they can explore smaller neighborhoods when computing actions that will improve
upon the current configuration.

Adaptation works on lookahead cost, which is the cost that is reachable in some future
time. Line 20 of DAMPC is reached (and the level t is incremented) whenever we are able to
decrease this look-ahead cost. If level t is incremented, neighborhood size k ∈ [kmin, kmax]
is decremented, and incremented otherwise, as follows: NeighSize(J, k) =

min
(
max

(
k −

⌈
(1− J(s(t))

k )
⌉
, kmin

)
, kmax

)
if level t was incremented

min (k + 1, kmax) otherwise.
(7.1)

In Fig. 7.3 we depict a simulation-trace example, demonstrating how levels and neighbor-
hood size are adapting to the current value of the cost function.

7.4 Convergence and Stability
Since we are solving a nonlinear nonconvex optimization problem, the cost J itself may
not decrease monotonically. However, the look-ahead cost – the cost of some future
reachable state – monotonically decreases. These costs are stored in level variables `t in
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Algorithm DAMPC and they define a Lyapunov function V .

V (t) = `t for levels t = 0, 1, 2, . . . (7.2)

where the levels decrease by at least a minimum dynamically defined threshold: V (t+ 1) <
V (t)−∆.

Lemma 2 V (t) : Z → R defined by (7.2) is a valid Lyapunov function, i.e., it is
positive-definite and monotonically decreases until the system reaches its goal state.

Proof 5 Note that the cost function J(s) is positive by definition, and since `t equals
J(s) for some state s, V is nonnegative. Line 18 of Algorithm DAMPC guarantees that
V is monotonically decreasing by at least ∆. Taking the discrete derivative of the above
Lyapunov function we obtain:

dV (r)/dr =


− 1
m`0 if r= 0

m−r−1
m−r J(s(r))− m−r

m−r+1J(s(r−1)) if r ∈ {1, . . . ,m−1}
ϕ− 1

2J(s(m−2)) if r=m.

(7.3)

a) r= 0 : − 1
m`0 < 0. b) r=m : ϕ− 1

2J(s(m−2)) = 0⇔ ϕ = 1
2J(s(m−2))⇔ property is

satisfied. c) r ∈ {1, . . . ,m−1} :

dV (r)/dr = J(s(r))− J(s(r−1))−
( 1
m−r

J(s(r))− 1
m−r+1J(s(r−1))

)
.

Consequently, in this case, dV (r)/dr = 0 if J(s(r)) > J(s(r−1)), i.e. the cost function
has not improved, and dV (r)/dr < 0 otherwise.

Lemma 3 (Global Consensus) Given Assumptions 1-7 in Section 7.2, all agents in
the system will fix their actions in a finite number of consensus rounds.

Proof 6 During the first consensus round, each agent i in the system runs LocalAMPC
for its own neighborhood Ni of the current size k. Due to Lemma 1, ∃ĥ such that a
solution, i.e. a set of action (acceleration) sequences of length ĥ, will be found for all
agents in the considered neighborhood Ni. Consequently, at the end of the round the
solutions for at least all the agents in Ni∗, where i∗ is the agent which proposed the
globally best solution, will be fixed. During the next rounds the procedure recurses. Hence,
the set R of all agents with nfy values is monotonically decreasing with every consensus
round.

Global consensus is reached by the system during communication rounds. However, to
achieve the global optimization goal we prove that the consensus value converges to the
desired property.
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Definition 12 Let {s(t) : t = 1, 2, . . .} be a sequence of random vector-variables and
s∗ be a random or non-random. Then s(t) converges with probability one to s∗ if

P
[ ⋃
ε>0

⋂
N<∞

⋃
n>N
|s(t)− s∗| > ε

]
= 0.

Lemma 4 (Max-neighborhood convergence) If DAMPC is run with constant neigh-
borhood size B, then it behaves identically to centralized AMPC.

Proof 7 If DAMPC uses neighborhood B, then it behaves like the centralized AMPC, because
the accelerations of all birds are fixed in the first consensus round.

Theorem 3 (Global Convergence) Let M be an MDP (S,A, T, J, I) with a posi-
tive and continuous cost function J and a nonempty set of target states G⊂S, with
G= {s | J(s)6ϕ}. If there exists a finite horizon hmax and a finite number of ex-
ecution steps m, such that centralized AMPC is able to find a sequence of actions
{a(t) : t = 1, . . . ,m} that brings M from a state in I to a state in G, then DAMPC is
also able to do so, with probability one.

Proof 8 We illustrate the proof by our example of flocking. Note that the theorem is
valid in the general formulation above for the fact that as global Lyapunov function
approaches zero, the local dynamical thresholds will not allow neighborhood solutions to
significantly diverge from reaching the state obtained as a result of repeated consensus
rounds. Owing to Lemma 1, after the first consensus round, Alg. 7.2 finds a sequence of
best accelerations of length hi∗ , for birds in subflock Ni∗ , decreasing their cost by ∆i∗ . In
the next consensus round, birds j outside Ni∗ have to adjust the accelerations for their
subflock Nj, while keeping the accelerations of the neighbors in Ni∗ ∩Nj to the already
fixed solutions. If bird j fails to decrease the cost of its subflock Nj with at least ∆j within
prediction horizon hi∗, then it can explore a longer horizon hj up to hmax. This allows
PSO to compute accelerations for the birds in Ni∗ ∩Nj in horizon interval hj <h6hi∗,
decreasing the cost of Nj by ∆j. Hence, the entire flock decreases its cost by ∆ (this
defines Lyapunov function V in Eq. 7.2) ensuring convergence to a global optimum. If
hmax is reached before the cost of the flock was decreased by ∆, the size of the neighborhood
will be increased by one, and eventually it would reach B. Consequently, using Theorem 1
in [TSE+17], there exists a horizon hmax that ensures global convergence. For this choice
of hmax and for maximum neighborhood size, the cost is guaranteed to decrease by ∆,
and we are bound to proceed to the next level in DAMPC. The Lyapunov function on levels
guarantees that we have no indefinite switching between “decreasing neighborhood size”
and “increasing neighborhood size” phases, and we converge (see Fig. 7.1).

Fig. 7.1 illustrates the proof of global convergence of our algorithm, where we overcome a
local minimum by gradually adapting the neighborhood size to proceed to the next level
defined by the Lyapunov function. In the plot on the right, we see 7 birds starting from an

80



7.5. Experimental Results

arbitrary initial state near the origin (x, y) = (0, 0), and eventually reaching V-formation
at position (x, y) ≈ (300, 100). However, around x ≈ 50, the flock starts to drift away
from a V-formation, but our algorithm is able to bring it back to a V-formation. Let us
see how this is reflected in terms of changing cost and neighborhood sizes. In the plot on
the left, we see the cost starting very high (blue lines), but mostly decreasing with time
steps initially. When we see an unexpected rise in cost value at time steps in the range
11−13 (corresponding to the divergence at x ≈ 50), our algorithm adaptively increases
the horizon h first, and eventually the neighborhood size, which eventually increases back
to 7, to overcome the divergence from V-formation, and maintain the Lyapunov property
of the red function. Note that the neighborhood size eventually decreases to three, the
minimum for maintaining a V-formation.

The result presented in [TSE+17] applied to our distributed model, together with Theo-
rem 3, ensure the validity of the following corollary.

Corollary 1 (Global Stability) Assume the set of target states G ∈ S has been reached
and one of the following perturbations of the system dynamics has been applied: a) the
best next action is chosen with probability zero (crash failure); b) an agent is displaced
(sensor noise); c) an action of a player with opposing objective is performed. Then
applying Algorithm 7.1 the system converges with probability one from a disturbed state
to a state in G.

7.5 Experimental Results
We comprehensively evaluated DAMPC to compute statistical estimates of the success
rate of reaching a V-formation from an arbitrary initial state in a finite number of steps
m. We considered flocks of size B = {5, 7, 9} birds. The specific reachability problem
we addressed is as follows. Given a flock MDP M with B birds and the randomized
strategy σ : S 7→PD(A) of Alg. 7.1, estimate the probability of reaching a state s where
the cost function J(s)6ϕ, starting from an initial state in the underlying Markov chain
Mσ induced by σ onM.

Since the exact solution to this stochastic reachability problem is intractable (infinite/con-
tinuous state and action spaces), we solve it approximately using statistical model checking
(SMC). In particular, as the probability estimate of reaching a V-formation under our
algorithm is relatively high, we can safely employ the additive error (ε, δ)-Monte-Carlo-
approximation scheme [GPR+14]. This requires L i.i.d. executions (up to a maximum
time horizon), determining in Zl if execution l reaches a V-formation, and returning
the mean of the random variables Z1, . . . , ZL. We compute µ̃Z =

∑L
l=1 Zl/L by using

Bernstein’s inequality to fix L∝ ln(1/δ)/ε2 and obtain P[µZ − ε ≤ µ̃Z ≤ µZ + ε] ≥ 1− δ,
where µ̃Z approximates µZ with additive error ε and probability 1− δ. In particular, we
are interested in a Bernoulli random variable Z returning 1 if the cost J(s) is less than
ϕ and 0 otherwise. In this case, we can use the Chernoff-Hoeffding instantiation of the
Bernstein’s inequality, and further fix the proportionality constant to N = 4 ln(2/δ)/ε [?].

81



7. Distributed Control

Table 7.1: Comparison of DAMPC and AMPC [TSE+17] on 103 runs.

DAMPC AMPC

Number of Birds 5 7 9 5 7 9

Success rate, µ̃Z 0.98 0.92 0.80 0.99 0.95 0.88
Avg. convergence duration, m 7.40 10.15 15.65 9.01 12.39 17.29
Avg. horizon, h 1.35 1.36 1.53 1.29 1.55 1.79
Avg. execution time in sec. 295s 974s ∝ 103s 644s 3120s ∝ 104s

Avg. neighborhood size, k

for good runs until convergence 3.69 5.32 6.35 5.00 7.00 9.00
for good runs over m steps 3.35 4.86 5.58 5.00 7.00 9.00
for good runs after convergence 4.06 5.79 6.75 5.00 7.00 9.00
for bad runs 4.74 6.43 6.99 5.00 7.00 9.00

Executing the algorithm 103 times for each flock size gives us a confidence ratio δ= 0.05
and an additive error of ε= 10−2.

We used the following parameters: number of birds B ∈ {5, 7, 9}, cost threshold ϕ= 10−1,
maximum horizon hmax = 3, number of particles in PSO p= 200·h·B. DAMPC is allowed to
run for a maximum ofm= 60 steps. The initial configurations are generated independently,
uniformly at random, subject to the following constraints on the initial positions and
velocities: ∀ i ∈ {1, . . . , B} xi(0) ∈ [0, 3]× [0, 3] and vi(0) ∈ [0.25, 0.75]× [0.25, 0.75]. To
perform the SMC evaluation of DAMPC, and to compare it with the centralized AMPC
from [TSE+17], we designed the above experiments for both algorithms in C, and ran
them on the 2x Intel Xeon E5-2660 Okto-Core, 2.2 GHz, 64 GB platform.

Our experimental results are given in Table 7.1. We used three different ways of computing
the average number of neighbors for successful runs. Assuming a successful run converges
after m′ steps, we (1) compute the average over the first m′ steps, reported as “for good
runs until convergence”; (2) extend the partial m′-step run into a full m-step run and
compute the average over all m steps, reported as “for good runs over m steps”; or
(3) take an average across > m steps, reported as “for good runs after convergence”, to
illustrate global stability.

We obtain a high success rate for 5 and 7 birds, which does not drop significantly
for 9 birds. The average convergence duration, horizon, and neighbors, respectively,
increase monotonically when we consider more birds, as one would expect. The average
neighborhood size is smaller than the number of birds, indicating that we improve over
AMPC [TSE+17] where all birds need to be considered for synthesizing the next action.
We also observe that the average number of neighbors for good runs until convergence is
larger than the one for bad runs, except for 5 birds. The reason is that in some bad runs
the cost drops quickly to a small value resulting in a small neighborhood size, but gets
stuck in a local minimum (e.g., the flock separates into two groups) due to the limitations
imposed by fixing the parameters hmax, p, and m. The neighborhood size remains small
for the rest of the run leading to a smaller average.

Finally, compared to the centralized AMPC [TSE+17], DAMPC is faster (e.g., two times
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faster for 5 birds). Our algorithm takes fewer steps to converge. The average horizon of
DAMPC is smaller. The smaller horizon and neighborhood sizes, respectively, allow PSO
to speed up its computation.

7.6 Chapter Summary
We introduced DAMPC, a distributed adaptive-neighborhood and adaptive-horizon model-
predictive control algorithm, that synthesizes actions for a controllable MDP, such that
the MDP eventually reaches a state with cost close to zero, provided that the MDP has
such a state.

The main contribution of DAMPC is that it adaptively resizes an agent’s local neighborhood,
while still managing to converge to a goal state with high probability. Initially, when the
cost value is large, the neighborhood of an agent is the entire multi-agent system. As the
cost decreases, however, the neighborhood is resized to smaller values. Eventually, when
the system reaches a goal state, the neighborhood size remains around a pre-defined
minimal value.

This is a remarkable result showing that the local information needed to converge is
strongly related to a cost-based Lyapunov function evaluated over a global system state.
While our experiments were restricted to V-formation in bird flocks, our approach applies
to reachability problems for any collection of entities that seek convergence from an
arbitrary initial state to a desired goal state, where a notion of distance to it can be
suitably defined.

One of the main goals for this work was to evaluate the dynamic neighborhood resizing
idea and determine if it can result in a relatively small average neighborhood size. Our
evaluation shows that this is indeed the case. We plan to focus on exploring alternative
stochastic dynamic models. Another direction for improvement is designing a version
of DAMPC where each time step starts with all birds running AMPC in parallel. Local
solutions are then subsequently combined through a series of information-exchange rounds
into a consistent global solution. Finally, we would like to consider an application of
DAMPC to control of drone teams, including the investigation of possible communication
faults.
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CHAPTER 8
Real-World Applications

8.1 Micro-Quadrotor Formation Control

Simulation tools offer a low barrier to entry and enable testing and validation before
field trials. However, most of the well-known simulators today are challenging to use
at scale due to the need for powerful computers and the time required for initial set
up. The OpenUAV Swarm Simulator [SLV+18, LKS+18] was developed to address these
challenges, enabling multi-UAV simulations on the cloud through the NSF CPS-VO [CV].
We leverage the Containers as a Service (CaaS) technology to enable students and
researchers carry out simulations on the cloud on demand. We have based our framework
on open-source tools including ROS, Gazebo, Docker, and the PX4 flight stack, and
we designed the simulation framework so that it has no special hardware requirements.
The demo and poster will showcase UAV swarm trajectory optimization, and multi-UAV
persistent monitoring on the CPS-VO. The code for the simulator is available on GitHub:
https://github.com/Open-UAV.

Currently, to develop UAV autonomy or conduct UAV experiments, the developer or
researcher starts with simulation and then moves to real robots [Bit19] in Fig. 8.1. For
simulation, the user (i.e., developer or researcher) usually works with the popular tools,
ROS and Gazebo, with ROS to communicate with the simulated robot(s) in Gazebo. To
run visualization, the user could use Gazebo or rviz [ROS19]. ROS is ideal for simulation
as it can port directly to a real robot, requiring little change to run real life testing.
The complexity of the simulated environment (e.g., number of objects, lighting, collision
checking) and the number of UAVs used, will determine the power of the computer
necessary for simulation.

The process of setting up these tools requires proficiency in UNIX (or Linux) systems
and access to a powerful desktop computer. This barrier to entry can inhibit researchers
and stagnate innovation of field systems. In education, these barriers are more prevalent.
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Figure 8.1: The Crazyflie 2.0 model used for field testing.

Students interested in learning about UAVs may lack Linux knowledge, and there may
be limited access to a powerful computer for an entire class. The above barriers slow
down research and limit education.

8.1.1 Swarm Case Studies

Achieving a formation of drones requires emulating the dynamics as close as possible to
reality to identify the risks of collisions or interferences between multiple UAVs. We chose
V-formation for the multirotors as planning of the close formation flights for them should
be downwash-aware as well as for winged vehicles (Fig. 8.2). The current state of the art
relied heavily on the environmental conditions and smoothness of the trajectories, which
limited the experiments to three drones and wide formations. In contrast, OpenUAV
allowed us to simulate larger flocks and study the performance of the algorithm on more
challenging starting configurations. Naturally, since aerodynamic considerations are not
currently addressed in the OpenUAV stack, it serves as a way for testing and debugging
the system before actual field trials (Fig. 8.3).

8.2 Multi-UAV Optimal Area Coverage

Our goal is to decide a position xd (d is for “desired”) for a group of n drones or agents.
To reach the desired position the team is bound to invest such resources as time and
energy. We aim at optimizing the above trade-off, namely maximizing the gain from
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Figure 8.2: Top: The OpenUAV simulator showing three UAVs implementing V-formation
behavior. Bottom: Three UAVs in a line formation on the flying field of PERCH Lab.
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Figure 8.3: The OpenUAV simulator showing six UAVs implementing leader-follower
behavior.

meeting the sensing target while minimizing related costs. The criteria or objectives for
the optimality of xd include:

1. Time T (xd) required for the drones to reach xd from their initial positions xi,
i = 1, . . . , n.

2. Communication cost C(xd) between xd and position of the central base.

3. Benefits S(xd) by sensing at xd, e.g., depending on the distance and angle to the
sensing target.

Thus, we have the following objective function to minimize

J(xd) = wTT (xd) + wCC(xd) + wSS(xd).

We use the mechanism of pinning agents. The central base gives commands to one drone
and its teammates try to adjust only by monitoring and following neighbor drones.

8.2.1 Solution

Let us focus on the first item of the objectives, Time T (xd). This is called “settling
time” in [SU17] as drones converge to the consensus or the xd position while explicit
commands to individual drones are not given. This value can be simulated once the value
of a control parameter K, representing “gain”, is determined.

In [SU17], the authors proved that there exists a lower bound for T (xd) (the theorem
does not explicitly show but indirectly suggests this result). Even if we increase the gain
K, we cannot infinitely decrease the settling time T (xd). Hence, there is a reasonable
K that leads to a small T (xd), whereas increasing K further does not pay (does not
decrease T (xd)). Given a certain xd, we can provide an educated guess for the optimal
gain control parameter K. Specifically, we run simulations for various values of K and see
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Figure 8.4: Left: Cameras deployed on UAVs cooperatively cover the purple line at the
optimal altitude where one agent (the most left one) is pinned. Right: Red dashed lines
are the altitude levels reached by ARES, where blue trajectories, starting around x = 100
belong to the pinned agent.

how T changes so that we find the value of K where increasing K does not significantly
increase T . This way, we can obtain the necessary time cost T (xd) for xd.

ARES approach, using metaheuristics-based optimization, can be employed in this problem
setting. For any xd values, we can evaluate the fitness values by using pinning consensus
control method for T (xd). ARES is also necessary as this problem setting does not fall into
a class of numerical optimization problems with a “good” shape of objective functions.
Fig. 8.4 illustrates the adaptive levels computed by ARES for covering a line with three
UAVs.

8.3 Chapter Summary
Based on open source software, we offer OpenUAV simulator free for public use towards
reducing the cost of research and education, and to promote further development of
the simulator. By being cloud enabled, we have lowered the barrier to entry to UAV
development and research by not requiring specific hardware or complicated setup. The
demonstration of multi-UAV formation control and persistent monitoring showcase to
potential users the effective use of this testbed for computationally challenging testing
done by a user not involved with development.

It is worth noting that among the three objectives of the multi-drone coverage problem,
the second one (communication cost C(xd)) is known to be a non-linear complex function.
This also justifies our approach. In summary, we found a good case study for ARES
approach. It uses pinning consensus control method (supported by the theoretical results,
uses simulation-based method). The combined approach can be further implemented
using ROS-based support system for supervision of multiple UAVs by a single operator
proposed in [HASU18].
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CHAPTER 9
Conclusions and Future Work

The adaptive optimization framework presented and evaluated in this thesis provides
an instrument for control and verification of cyber-physical systems. Its application
is particularly valuable for optimization-based problems where the objective function
is non-linear, non-convex, and non-differentiable. The framework can work with an
input model of the system and an objective function as black boxes, provided the
system is controllable and the optimum of the function exists. The internal procedure
of the proposed approach can be successfully distributed locally among a collection of
cooperative agents or networked components of a system. The convergence is achieved via
building a Lyapunov function and the performance is guaranteed by statistical evaluation.

The results of this thesis give rise to the following residual challenges.

9.1 Runtime Control
The future work can be characterized by the following milestones. First, we would like to
assess the flocking model and cost function we developed when exposed to the real-world
environment. Second, we seek to eliminate the shortcomings that can be identified as
a result. Third, we plan to design and execute experimental scenarios of the drone
formation control. As a final step, we will analyze collected sensor data to develop an
efficient runtime controller that would bring the drones into optimal formation.

To meet the above goals we will first test our model in the corresponding simulated
environment. OpenUAV [SLV+18], an online drone simulation framework, can be of
considerable help at this stage. In this process, we will iteratively improve flocking and
cost function models. Further on, when the model-system shows stable performance
during simulations, we will design preliminary experiments with a small number of drones.
If successful, we will proceed with working on advancing the control design. When we
achieve a satisfactory acceleration compared to the current design, we can gradually
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increase the number of drones in the experiments as well as explore various environmental
conditions.

Each intermediary goal individually when successfully completed will benefit the research
direction we pursue. In comparison with our previous experience in robot control, this
future work will require a deeper understanding of aerodynamics of the drones and more
comprehensive familiarity with testing facilities. Below, we summarize the major risks
we identify. A relatively large formation of drones, when exposed to stochastic external
effects, might exhibit emergent behaviors not encountered previously in our research. This
can potentially hinder the experimental design but will, however, present an opportunity
for deeper scientific discoveries. In this case, we will resort to experiments of a lower
scale. Another challenge could be posed by the computational capacity available at the
site. We can remedy this by connecting to remote servers available. One more risk factor
is the drones themselves which performance depends on their battery life and physical
characteristics. Fortunately, our goals are flexible in terms of the number of drones
involved and reaching the desired formation after losing a few team members will only
strengthen our findings.

9.2 Distributed Missions
Teams of autonomous agents have been increasingly employed for completing time-critical
tasks, such as urgent medical delivery or search and rescue. It is of the utmost importance
to design distributed approaches making those missions possible even in the presence
of individual agent failures. In the following, we give some initial ideas for future novel
coordination algorithm for a team of agents to resiliently fulfill temporal global missions
in a distributed fashion. The team receives an assignment expressed in metric temporal
logic (MTL) with pointwise semantics. After an initial task allocation, agents have
a nonzero risk of failing to meet their own commitments or crashing at any point in
time. The algorithm presented in [DSY+17] addresses coordination and dynamical task
allocation for distributed robot teams. In addition to [DSY+17], we would like to consider
fault-tolerance aspect and robustness-based task bidding. Oblivious of the individual
capabilities of the team members, we design a procedure for re-distributing the team’s
liability after the failure of a teammate. To derive the remaining duty for each agent, we
adopt three-valued semantics of MTL. We tested our approach on a model drone fleet
with a delivery mission. Preliminary results demonstrate that our algorithm guarantees
a successful completion of the global mission.

Global missions we focus on include application-inspired and therefore complex temporal
properties that can be expressed in MTL [AH91, OW08]. Our core idea is to regularly
monitor satisfaction of the given property on a global level while allowing each agent to
report status of the individual missions distributed to them. Our procedure comprises
the following recurring stages: update, bid, distribute, proceed.

We use three-valued MTL semantics [MNP05] to encode the status update of the global and
individual missions. Both are regularly monitored accordingly: true, if the property in
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Figure 9.1: (Left) A global mission is broadcast to each agent in the team. Dotted
lines are communication network among closest neighbors. (Right) Robustness-based
re-distribution of the liabilities caused by a failure of the agent up side down in red.

question is satisfied; false in case of violation; and ⊥ (unknown), otherwise. Assuming
the original specification is broadcast as an MTL formula, we first convert it into a
conjunctive normal form (CNF). This way we obtain a set of duties that when completed
accomplishes the global mission.

During bidding stage, each agent computes a strategy to fulfill each of the duties before
they commit to any. A robustness measure [FP06, DJS18] for each lot is then exchanged
between closest neighbors. The most robust strategy wins at this stage.

With the help of constraint optimization, the duties are distributed among the team
members. If there are more sub-missions than available agents the bidding is repeated
until all the duties are assigned.

Finally, the team proceeds following the computed trajectories [SNB+17]. There are
two scenarios in which the events can develop after the next monitoring step: proceed
normally or re-configure. Re-configuration initiates when agent failure is detected. We
say that the system is exposed to operational and credit risks, which are associated
with an agent failing in their duty due to physical faults or MTL property violation,
respectively. The task this fallen team member was committed to becomes the team’s
liability, which is to undergo bidding and distribution anew. The resulting remaining
duty goes to the highest bidder.

In our experimental model, we consider a multi-agent system of four interdependent
heterogeneous UAVs available for a takeoff at starting locations distributed uniformly at
random in the plane. A set of four targets is scattered uniformly at random as well. We
introduce an unsafe region to be avoided at all costs. An agent touching the no-entry
zone is assumed failed. This way we adopt one of the most popular and illustrative
missions for a team of drones, such as “reach-avoid” [SNS+17]. Furthermore, we are
interested in fulfilling this mission resiliently and therefore our model is exposed to two
types of risks: operational and credit risks. Below we list these and other assumptions
we make about the model.
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Figure 9.2: Triangles are the agents and circles are the target locations. Solid blue region
is an unsafe zone to avoid. Dashed line is the path a drone was to take before it failed
(up side down in red).

9.2.1 Problem assumptions

– Each agent can only communicate with their two closest neighbors.

– Operational risk can stem from any physical failure of one drone, to which we
expose the system at each time step with probability 10−2.

– Credit risk is borne by the system when a drone fails to fulfill its duty due to
violating time or safety requirements.

– Robustness of a given strategy is computed as the measure of how much extra time
this strategy provides for successful satisfaction of a given temporal mission.

9.2.2 Temporal mission specification

1. ∀i = 1, . . . , 4:

– Visit Ri only once.
– Service Ri within ti from the initial takeoff of the team.
– Spend at most τ time at Ri.
– Always avoid region A.

2. Finally visit all R = {R1, . . . , R4} within time t4 from the initial takeoff, where
t1 < t2 < t3 < t4.

3. Service locations according to a given task hierarchy h : R→ N, such as h(R1) >
h(R2) > h(R3) > h(R4).
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The corresponding global MTL formula is the following:

ϕ =
4∧
i=1
3[0,ti]ϕi ∧

(
¬ϕ4U[0,t3]ϕ3 ∧ ¬ϕ3U[0,t2]ϕ2 ∧ ¬ϕ2U[0,t1]ϕ1

)
,

where ∀i = 1, . . . , 4: ϕi = 2[0,τ ]x ∈ Ri and Ri = Bε(ri) is an ε-ball around the goal
location ri.

Figure 9.2 depicts trajectories of the drones from takeoff to successful mission completion.
Shortly after the start one of the drones fell out of the team. This drone had two
neighbors to which our coordination algorithm broadcast the resulting liability. Each
of the neighbors proposed a new trajectory for itself taking into account the received
information, i.e. a new target and corresponding deadline in this case. The most robust
proposal won the bidding and winning (yellow) strategy was executed.
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Acronyms

BLTL Bounded Linear Temporal Logic. 9–11

CPS Cyber-Physical Systems. 2, 3, 6, 11, 12, 16–18, 21, 22, 24, 29, 31, 34, 35, 53

HMM Hidden Markov Model. xiii, xix, 9, 11, 12, 22–29, 31, 32, 35, 37

ISam Importance Sampling. xiii, 9, 12, 13, 16, 21, 22, 27, 30, 31, 35

ISpl Importance Splitting. xiii, 9, 12, 13, 16, 17, 21–23, 28–32, 34, 35, 38, 44–46

MDP Markov Decision Process. xii, 9, 11, 14, 38–41, 43, 45–48, 52–58, 61, 62, 68–70,
72, 73, 76, 77, 79

MPC Model Predictive Control. 9, 11, 13, 16–19, 37, 38, 46, 53, 54, 56, 57, 60, 65

PSO Particle Swarm Optimization. xiv, xv, 4, 9, 13, 17, 38, 41, 43, 45–47, 51, 52, 57–59,
61, 62, 65, 68, 72, 73, 76, 78, 79

SMC Statistical Model Checking. 3, 9, 11, 13, 15, 16
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[Kol] Andrĕı Kolmogorov. Foundations of the Theory of Probability: Second
English Edition.

[Kre16] Arthur J Krener. Adaptive horizon model predictive control. arXiv preprint
arXiv:1602.08619, 2016.

[Kri19] Karin Krichmayr. Der standard, 2019.

[Kro19] Katharina Kropshofer. Wiener ball der wissenschaften 2019, 2019.

[LEH+17] Anna Lukina, Lukas Esterle, Christian Hirsch, Ezio Bartocci, Junxing
Yang, Ashish Tiwari, Scott A. Smolka, and Radu Grosu. ARES: Adaptive
Receding-Horizon Synthesis of Optimal Plans. In TACAS 2017, volume
10206 of LNCS, pages 286–302, 2017.

[LKS+18] Anna Lukina, Arjun Kumar, Matt Schmittle, Abhijeet Singh, Jnaneshwar
Das, Stephen Rees, Christopher P. van Buskirk, Janos Sztipanovits, Radu
Grosu, and Vijay Kumar. Formation control and persistent monitoring
in the openUAV swarm simulator on the NSF CPS-VO. In ICCPS 2018,
pages 353–354. IEEE / ACM, 2018.

[LS70] PBS Lissaman and Carl A Shollenberger. Formation flight of birds. Science,
168(3934):1003–1005, 1970.

[MCGS15] Gabriel A Moreno, Javier Cámara, David Garlan, and Bradley Schmerl.
Proactive self-adaptation under uncertainty: a probabilistic model checking
approach. In Proceedings of the 2015 10th joint meeting on foundations of
software engineering, pages 1–12. ACM, 2015.

[MNP05] Oded Maler, Dejan Nickovic, and Amir Pnueli. Real time temporal logic:
Past, present, future. In International Conference on Formal Modeling and
Analysis of Timed Systems, pages 2–16. Springer, 2005.

[MPA+17] Gabriel A. Moreno, Alessandro V. Papadopoulos, Konstantinos Angelopou-
los, Javier Cámara, and Bradley Schmerl. Comparing model-based predic-
tive approaches to self-adaptation: Cobra and pla. In Proceedings of the
12th International Symposium on Software Engineering for Adaptive and

105



Self-Managing Systems, SEAMS ’17, pages 42–53, Piscataway, NJ, USA,
2017. IEEE Press.

[MRG03] S. Mannor, R. Y. Rubinstein, and Y. Gat. The cross entropy method for
fast policy search. In ICML, pages 512–519, 2003.

[MRRS00] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert. Survey
constrained model predictive control: Stability and optimality. Automatica,
36(6):789–814, June 2000.

[MSK+17] Shaunak Mishra, Yasser Shoukry, Nikhil Karamchandani, Suhas N. Diggavi,
and Paulo Tabuada. Secure state estimation against sensor attacks in the
presence of noise. IEEE Trans. Control of Network Systems, 4(1):49–59,
2017.

[Nar90] Kumpati S. Narendra. Adaptive control using neural networks. In Neural
networks for control, pages 115–142. MIT Press, 1990.

[NAS01] NASA. F/A-18 Autonomous Formation Flight (AFF), 2001.

[NAS03] NASA. Fly Like a Bird, 2003.

[NB08] A. Nathan and V. C. Barbosa. V-like formations in flocks of artificial birds.
Artificial Life, 14(2):179–188, 2008.

[NKC16] Lebsework Negash, Sang-Hyeon Kim, and Han-Lim Choi. An unknown-
input-observer based approach for cyber attack detection in formation flying
UAVs. In AIAA Infotech, 2016.

[NSF] https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=
503286.

[OW08] Joël Ouaknine and James Worrell. Some recent results in metric temporal
logic. In International Conference on Formal Modeling and Analysis of
Timed Systems, pages 1–13. Springer, 2008.

[OY02] Katsuhiko Ogata and Yanjuan Yang. Modern control engineering, volume 4.
Prentice hall India, 2002.

[PDB13] F. Pasqualetti, F. Dorfler, and F. Bullo. Attack detection and identification
in cyber-physical systems. IEEE Trans. on Automatic Control, 58(11):2715–
2729, 2013.

[PHF+14] Steven J Portugal, Tatjana Y Hubel, Johannes Fritz, Stefanie Heese, Daniela
Trobe, Bernhard Voelkl, Stephen Hailes, Alan M Wilson, and James R Ush-
erwood. Upwash Exploitation and Downwash Avoidance by Flap Phasing
in Ibis Formation Flight. Nature, 505(7483):399–402, 2014.

106

https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=503286
https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=503286


[PIW+15] Junkil Park, Radoslav Ivanov, James Weimer, Miroslav Pajic, and Insup
Lee. Sensor attack detection in the presence of transient faults. In 6th
ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS),
2015.

[PWB+14] Miroslav Pajic, James Weimer, Nicola Bezzo, Paulo Tabuada, Oleg Sokolsky,
Insup Lee, and George J. Pappas. Robustness of attack-resilient state
estimators. In 5th ACM/IEEE International Conference on Cyber-Physical
Systems (ICCPS), 2014.

[Rab89a] Lawrence R Rabiner. A tutorial on hidden markov models and selected
applications in speech recognition. Proceedings of the IEEE, 77(2):257–286,
1989.

[Rab89b] L.R. Rabiner. A tutorial on hidden markov models and selected applications
in speech recognition. 77(2):257–286, February 1989.

[Rey87] Craig W. Reynolds. Flocks, herds and schools: A distributed behavioral
model. SIGGRAPH Computer Graphics, 21(4):25–34, 1987.

[RG99] S. Roweis and Z. Ghahramani. A unifying review of linear gaussian models.
Neural Computation, 11(2):305–345, February 1999.

[RKK13] Boguslaw Rymut, Bogdan Kwolek, and Tomasz Krzeszowski. GPU-
Accelerated Human Motion Tracking Using Particle Filter Combined with
PSO. In Proceedings. of the International Conference on Advanced Con-
cepts for Intelligent Vision Systems, volume 8192 of LNCS, pages 426–437.
Springer, 2013.

[RN10] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach.
Prentice-Hall, 3rd edition, 2010.

[ROS19] ROS. Rviz, 2019.

[SBH+05] A Shamshad, MA Bawadi, WMA Wan Hussin, TA Majid, and SAM Sanusi.
First and second order markov chain models for synthetic generation of
wind speed time series. Energy, 30(5):693–708, 2005.

[SBS+12] S. Stoller, E. Bartocci, J. Seyster, R. Grosu, K. Havelund, S.A. Smolka, and
E. Zadok. Runtime Verification with State Estimation. In S. Khurshid and
K. Sen, editors, RV’11 Proceedings of the Second International Conference
on Runtime Verification, volume 7186 of LNCS, pages 193–207. Springer,
2012.

[SCW+18] Yasser Shoukry, Michelle Chong, Masashi Wakaiki, Pierluigi Nuzzo, Al-
berto L. Sangiovanni-Vincentelli, Sanjit A. Seshia, João Pedro Hespanha,
and Paulo Tabuada. Smt-based observer design for cyber-physical systems
under sensor attacks. TCPS, 2(1):5:1–5:27, 2018.

107



[sel] Self Driving cars for transportation is targeted
by 2020. https://www.techiexpert.com/
self-driving-cars-for-transportation-is-targeted-by-2020/.

[Sha53] Lloyd S Shapley. Stochastic games. Proceedings of the national academy of
sciences, 39(10):1095–1100, 1953.

[SLV+18] Matt Schmittle, Anna Lukina, Lukas Vacek, Jnaneshwar Das, Christopher P.
van Buskirk, Stephen Rees, Janos Sztipanovits, Radu Grosu, and Vijay
Kumar. OpenUAV: a UAV testbed for the CPS and robotics community.
In ICCPS 2018, pages 130–139. IEEE / ACM, 2018.

[SNB+17] Yasser Shoukry, Pierluigi Nuzzo, Ayca Balkan, Indranil Saha, Alberto L.
Sangiovanni-Vincentelli, Sanjit A. Seshia, George J. Pappas, and Paulo
Tabuada. Linear temporal logic motion planning for teams of underac-
tuated robots using satisfiability modulo convex programming. In 56th
IEEE Annual Conference on Decision and Control, CDC 2017, Melbourne,
Australia, December 12-15, 2017, pages 1132–1137. IEEE, 2017.

[SNP+17] Yasser Shoukry, Pierluigi Nuzzo, Alberto Puggelli, Alberto L. Sangiovanni-
Vincentelli, Sanjit A. Seshia, and Paulo Tabuada. Secure state estimation
for cyber-physical systems under sensor attacks: A satisfiability modulo
theory approach. IEEE Trans. Automat. Contr., 62(10):4917–4932, 2017.

[SNS+17] Yasser Shoukry, Pierluigi Nuzzo, Alberto L. Sangiovanni-Vincentelli, San-
jit A. Seshia, George J. Pappas, and Paulo Tabuada. SMC: satisfiability
modulo convex optimization. In Goran Frehse and Sayan Mitra, editors,
Proceedings of the 20th International Conference on Hybrid Systems: Com-
putation and Control, HSCC 2017, Pittsburgh, PA, USA, April 18-20, 2017,
pages 19–28. ACM, 2017.

[SPH02] P. Seiler, A. Pant, and K. Hedrick. Analysis of bird formations. In
Proceedings of the Conference on Decision and Control, volume 1, pages
118–123 vol.1. IEEE, 2002.

[SS12a] F. Stulp and O. Sigaud. Path integral policy improvement with covariance
matrix adaptation. arXiv preprint arXiv:1206.4621, 2012.

[SS12b] F. Stulp and O. Sigaud. Policy improvement methods: Between black-box
optimization and episodic reinforcement learning, 2012.

[SSP+17] Kelsey Saulnier, David Saldana, Amanda Prorok, George J Pappas, and
Vijay Kumar. Resilient flocking for mobile robot teams. IEEE Robotics
and Automation Letters, 2(2):1039–1046, 2017.

[SU17] Akinori Sakaguchi and Toshimitsu Ushio. Dynamic pinning consensus
control of multi-agent systems. IEEE Control Systems Letters, 1(2):340–
345, 2017.

108

https://www.techiexpert.com/self-driving-cars-for-transportation-is-targeted-by-2020/
https://www.techiexpert.com/self-driving-cars-for-transportation-is-targeted-by-2020/


[SV16] Lili Su and Nitin H Vaidya. Fault-tolerant multi-agent optimization: optimal
iterative distributed algorithms. In Proceedings of the 2016 ACM Symposium
on Principles of Distributed Computing, pages 425–434. ACM, 2016.

[Tes] Tesla’s Autopilot Was Involved in Another Deadly
Car Crash. https://www.wired.com/story/
tesla-autopilot-self-driving-crash-california/.

[TSE+17] Ashish Tiwari, Scott A. Smolka, Lukas Esterle, Anna Lukina, Junxing
Yang, and Radu Grosu. Attacking the V: on the resiliency of adaptive-
horizon MPC. In Automated Technology for Verification and Analysis -
15th International Symposium, ATVA 2017, volume 10482 of LNCS, pages
446–462. Springer, 2017.

[Ube] Uber self-driving test car involved in accident resulting in
pedestrian death. https://techcrunch.com/2018/03/19/
uber-self-driving-test-car-involved-in-accident-resulting-in-pedestrian-death/.

[VGST04] V. Verma, G. Gordon, R. Simmons, and S. Thrun. Real-time fault diagnosis
[robot fault diagnosis]. Robotics Automation Magazine, IEEE, 11(2):56–66,
2004.

[Wal45a] A. Wald. Sequential Tests of Statistical Hypotheses. The Annals of
Mathematical Statistics, 16(2):117–186, June 1945.

[Wal45b] Abraham Wald. Sequential tests of statistical hypotheses. The annals of
mathematical statistics, 16(2):117–186, 1945.

[WMC+01a] H. Weimerskirch, J. Martin, Y. Clerquin, P. Alexandre, and S. Jiraskova.
Energy saving in flight formation. Nature, 413(6857):697–698, oct 2001.

[WMC+01b] Henri Weimerskirch, Julien Martin, Yannick Clerquin, Peggy Alexandre, and
Sarka Jiraskova. Energy Saving in Flight Formation. Nature, 413(6857):697–
698, 2001.

[YGST16a] Junxing Yang, Radu Grosu, Scott A. Smolka, and Ashish Tiwari. Love
Thy Neighbor: V-Formation as a Problem of Model Predictive Control. In
CONCUR 2016, volume 59 of LIPIcs, pages 4:1–4:5, 2016.

[YGST16b] Junxing Yang, Radu Grosu, Scott A Smolka, and Ashish Tiwari. Love
thy neighbor: V-formation as a problem of model predictive control. In
LIPIcs-Leibniz International Proceedings in Informatics, volume 59. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

[YGST16c] Junxing Yang, Radu Grosu, Scott A Smolka, and Ashish Tiwari. V-
formation as optimal control. In Proceedings of the Biological Distributed
Algorithms Workshop 2016, 2016.

109

https://www.wired.com/story/tesla-autopilot-self-driving-crash-california/
https://www.wired.com/story/tesla-autopilot-self-driving-crash-california/
https://techcrunch.com/2018/03/19/uber-self-driving-test-car-involved-in-accident-resulting-in-pedestrian-death/
https://techcrunch.com/2018/03/19/uber-self-driving-test-car-involved-in-accident-resulting-in-pedestrian-death/


[YKNP06a] Håkan L. S. Younes, Marta Z. Kwiatkowska, Gethin Norman, and David
Parker. Numerical vs. statistical probabilistic model checking. STTT,
8(3):216–228, 2006.

[YKNP06b] H.L.S. Younes, M.Z. Kwiatkowska, G. Norman, and D. Parker. Numerical
vs. statistical probabilistic model checking. STTT, 8(3):216–228, 2006.

[YM02] Håkan L. S. Younes and David J. Musliner. Probabilistic plan verification
through acceptance sampling. In IN PROCEEDINGS OF THE AIPS 2002
WORKSHOP ON PLANNING VIA MODEL CHECKING, pages 0–7695.
AAAI Press, 2002.

[YZS17] D. Ye, J. Zhang, and Z. Sun. Extended state observer–based finite-time
controller design for coupled spacecraft formation with actuator saturation.
Advances in Mechanical Engineering, 9(4):1–13, 2017.

[ZBC12] P. Zuliani, C. Baier, and E.M. Clarke. Rare-event verification for stochastic
hybrid systems. In Proceedings of the 15th ACM International Conference
on Hybrid Systems: Computation and Control, HSCC ’12, pages 217–226.
ACM, 2012.

[ZL13] Jingyuan Zhan and Xiang Li. Flocking of multi-agent systems via model
predictive control based on position-only measurements. IEEE Trans.
Industrial Informatics, 9(1):377–385, 2013.

[ZT09] You Zhou and Ying Tan. GPU-based Parallel Particle Swarm Optimization.
In Proceedings of the Congress on Evolutionary Computation, pages 1493–
1500. IEEE, 2009.

110


	Kurzfassung
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Taking Off
	Ground Control
	Mission
	Scientific Contributions
	Landing

	Background
	Hidden Markov Models
	Temporal Logic
	Markov Decision Process
	Statistical Model Checking
	Model Predictive Control
	Learning: Baum-Welch Algorithm
	Sequential Monte-Carlo Methods
	Particle Swarm Optimization
	Flocking and V-Formation

	State of the Art
	Related Work on Statistical Model Checking
	Related Work on Flocking
	Related Work on CPS Control
	Related Work on Distributed Control
	Summary

	Verification
	Statistical Model Checking
	Rare Event Verification
	System Identification
	State Estimation
	Feedback Control
	Scoring
	Experimental Results
	Discussion
	Chapter Summary

	Plan Synthesis for Reachability
	V-Formation MDP
	The ARES Algorithm
	Experimental Results
	Chapter Summary

	Control Synthesis for Resiliency
	Controller-Attacker Games
	The Adaptive-Horizon MPC Algorithm
	Stochastic Games for V-Formation
	Statistical MC Evaluation of V-Formation Games
	Discussion of the Results
	Chapter Summary

	Distributed Control
	The Stochastic Reachability Problem
	Adaptive-Neighborhood Distributed Control
	The Distributed AMPC Algorithm
	Convergence and Stability
	Experimental Results
	Chapter Summary

	Real-World Applications
	Micro-Quadrotor Formation Control
	Multi-UAV Optimal Area Coverage
	Chapter Summary

	Conclusions and Future Work
	Runtime Control
	Distributed Missions

	List of Algorithms
	Acronyms
	Bibliography

